INSPECÇÕES DE SEGURANÇA RODOVIÁRIA
MANUAL DE APLICAÇÃO
Inspecções de Segurança Rodoviária

Manual de Aplicação

DOCUMENTO BASE

Trabalho realizado para o InIR, no âmbito de um protocolo celebrado com o LNEG - Laboratório Nacional de Engenharia Civil, I.P.
O presente relatório foi elaborado no âmbito da definição do enquadramento técnico para a realização de inspecções de segurança rodoviária (ISR) às estradas da Rede Rodoviária Nacional, incluindo a elaboração de um manual e a estruturação de acções de formação, trabalho em curso no LNEC por solicitação do Instituto de Infra-estruturas Rodoviárias, I.P.

As ISR fazem parte do conjunto de actividades previstas na Directiva 2008/96/EC do Parlamento Europeu e do Conselho, sobre gestão da segurança na infra-estrutura rodoviária, destinadas à melhoria das condições de segurança rodoviária na TERN – a rede rodoviária transeuropeia.

No presente relatório apresenta-se a versão do Manual de Inspeções de Segurança incorporando as alterações efectuadas como resultado do teste, mediante realização de inspecções piloto a estradas da Rede Rodoviária Nacional, do procedimento inicialmente proposto. São, também, apresentados em anexo os relatos das duas inspecções piloto realizadas, uma numa estrada de faixa de rodagem única e outra numa estrada de dupla faixa de rodagem.
ABSTRACT

This report was completed as part of the preparation of a technical manual for road safety inspections of the National Road Network, a study commissioned by the Portuguese Instituto de Infra-estruturas Rodoviárias, I.P. to LNEC.

This report contains the version of the Technical Manual for Road Safety Inspections, that resulted from the applicability test of the procedures and technical content contained in the preliminary version. This test was carried out by means of pilot road safety inspections of National Road Network single and dual carriageway road stretches; the results of these pilot tests are presented in two annexes included in this report.
ÍNDICE

1| CONCEITO DE INSPECÇÃO DE SEGURANÇA RODOVIÁRIA 1
 1.1 Definição .. 1
 1.2 Objectivos .. 4
 1.3 Competências .. 6
 1.4 Tipos de ISR ... 7
 1.5 Periodicidade e critérios de selecção de estradas ... 9
 1.6 Custos e benefícios .. 11

2| RECOMENDAÇÕES TÉCNICAS ... 14
 2.1 Enquadramento das ISR na Directiva 2008/96/CE ... 14
 2.2 Perigos a identificar e a atender .. 19
 2.3 Classificação dos perigos ... 20
 2.4 Recomendações de boa prática e requisitos normativos relevantes 24
 2.5 Utilização de dados sobre a sinistralidade .. 50
 2.6 Supervisão da aplicação das intervenções e dos respectivos resultados 51

3| PROCEDIMENTOS PARA REALIZAÇÃO DE ISR ... 56
 3.1 Introdução ... 56
 3.2 Desenvolvimento geral do processo .. 57
 3.3 Periodicidade .. 61
 3.4 Equipas inspectoras ... 61
 3.5 Seguimento das ISR .. 62

4| LISTAS DE VERIFICAÇÕES .. 64

5| PROSSEGUIMENTO DOS TRABALHOS .. 66

6| BIBLIOGRAFIA ... 69
ÍNDICE DE QUADROS

Quadro 1 – Conteúdo e periodicidade das ISR na Alemanha ...9
Quadro 2 – Gravidade dos embates, em função da velocidade de circulação dos veículos motorizados e do tipo de embate ..22
Quadro 3 – Probabilidade de ocorrência dos embates, em função do TMDA de veículos motorizados ...23
Quadro 4 – Qualificação das recomendações acerca das deficiências detectadas23
Quadro 5 – Sistema de sinalização de curvas em planta, em função da classe de homogeneidade ..30
Quadro 6 – Esquema geral dos procedimentos de execução de uma ISR60
Quadro 7 – Periodicidade das ISR na RRN ..61
ÍNDICE DE FIGURAS

Figura 1 – Adaptação à evolução das funções da infra-estrutura rodoviária .. 5
Figura 2 – Intervenções na infra-estrutura rodoviária para mitigação da sinistralidade
(Adaptado de [12]) .. 16
Figura 3 – Perigos devidos a falta de conservação corrente .. 19
Figura 4 – Mecanismos causais nas intervenções em segurança rodoviária (adaptado de
[23]) .. 52
Figura 5 – Esquema sumário da execução do procedimento de realização de ISR na RRN 59
ÍNDICE DE ANEXOS

Anexo I – Listas de verificação...75
Anexo II – Documentos de referência do Instituto de Infra-estruturas Rodoviárias87
Anexo III – Relatório de inspecção de segurança rodoviária à EN 234, entre os km 0+000
(Mira) e 14.937 (Cantanhede), a 2010-11-09 ...125
Anexo IV – Relatório de inspecção de segurança rodoviária à A 8, entre os km 44+111
(Torres Vedras) e 62+420 (Bombarral), a 2010-12-15 Erro! Marcador não definido.
1 | CONCEITO DE INSPECÇÃO DE SEGURANÇA RODOVIÁRIA

1.1 Definição

De acordo com o n.º 7 do art.º 2 da Directiva 2008/96/EC do Parlamento e do Conselho, uma inspecção de segurança rodoviária corresponde, genericamente, a uma “verificação periódica das características e deficiências que necessitem de ser objecto de trabalhos de manutenção, por motivos de segurança”\(^1\).

Trata-se de uma definição vaga, que abrange simultaneamente aspectos de manutenção das características originais da estrada – susceptíveis de serem alteradas em resultado da acção do tempo e da operação da infra-estrutura – e aspectos de modernização da estrada – no sentido disponibilizar os níveis de segurança que a sociedade exige em cada momento da vida útil da infra-estrutura.

Os primeiros aspectos são, habitualmente, satisfeitos mediante as inspecções de conservação periódicas, já realizadas pelas administrações rodoviárias da maioria dos Estados Membros; não constituem, por isso, o objecto principal da referida Directiva.

Assim, define-se inspecção de segurança rodoviária (ISR) como:

1) Uma ferramenta apriorística (ver Capítulo 2.1) de intervenção em segurança rodoviária;

2) que consiste numa inspecção, \textit{in situ}, regular e sistemática, de estradas em operação, abrangendo a totalidade da Rede Rodoviária Nacional (RRN);

3) efectuada por equipas de peritos em segurança rodoviária com treino específico;

4) resultando num relatório formal identificando os perigos e os problemas de segurança detectados;

\(^1\) Na versão inglesa: ‘\textit{safety inspection}’ means an ordinary periodical verification of the characteristics and defects that require maintenance work for reasons of safety’.
5) ao qual a autoridade rodoviária competente (habitualmente a concessionária) tem de dar uma resposta formal.

A definição acima apresentada decorre do entendimento comum relativamente aos atributos de uma ISR a que se chegou no âmbito de um projecto europeu co-financiado pela União Europeia (EU) ao abrigo do 6º programa Quadro de I&D (o projecto RIPCORD), o qual permitiu sistematizar conceitos e estabelecer o referencial para o desenvolvimento de recomendações quanto a boas práticas e a formas de regular e regulamentar os respectivos procedimentos de aplicação ([1] e [2]).

As ISR são uma ferramenta apriorística, pois a sua aplicação a um determinado trecho de estrada é independente do conhecimento do respectivo nível de sinistralidade (ou de segurança). Idealmente nem a decisão de realizar a ISR a um itinerário ou elemento rodoviário (por exemplo um conjunto de cruzamentos) nem a execução dos procedimentos da ISR dependem do conhecimento dos registos de acidentes no trecho de estrada em causa. Para realizar uma ISR basta o conhecimento geral acerca dos perigos e dos problemas de segurança mais relevantes em estradas com características de envolvente rodoviária similares às do trecho em análise.

Não há, no entanto, impedimentos a que os registos de acidentes sejam usados como critério para selecção dos trechos de estrada a analisar ou como elemento auxiliar na selecção das medidas correctivas, o que constitui a prática de alguns Estados Membros. Estes desvios da definição apresentada não afectarão significativamente a aplicação da ferramenta ISR, desde que esteja facilmente acessível informação com a qualidade necessária, que o procedimento adoptado vise manter os níveis de desempenho de segurança, e não se confunda a ISR com a análise do nível de segurança da rede ou com a intervenção em zonas de acumulação de acidentes (ver definições no Capítulo 2.1 e recomendações em 2.5) [3].

As ISR devem ter um carácter periódico e cobrir a totalidade da rede rodoviária, de modo a garantir que todas as estradas sejam susceptíveis de melhoria e que a avaliação da coerência da rede abranja todas as estradas e não somente as principais. Existe alguma variabilidade entre Estados Membros no que se refere à periodicidade das ISR (1 a 5 anos) e ao conjunto de aspectos em consideração.
(designadamente, todos os aspectos, só condições diurnas ou nocturnas, só características da área adjacente à faixa de rodagem ou só circulação pedonal). Na maioria dos casos, os critérios mais frequentemente considerados na definição de regras de prioridade para a realização de ISR envolvem o nível de sinistralidade dos trechos e a sua categoria hierárquica na rede.

A ISR de um trecho de estrada deve incluir uma fase de inspecção visual realizada in situ. De acordo com a experiência de alguns países, parte das tarefas de uma ISR podem ser realizadas em gabinete, desde que os inventários rodoviários e os formulários de relato tenham os atributos necessários – designadamente informação visual georreferenciada adequada.

Motivos de eficiência da aplicação das ISR justificam a recomendação para que as inspecções in situ e a selecção das medidas correctivas sejam tarefas desempenhadas por equipas de técnicos qualificados com formação específica, familiarizados com o funcionamento do sistema de tráfego. A qualificação e a experiência dos técnicos são condições essenciais, uma vez que eles têm de detectar os locais e aspectos problemáticos aquando da análise preliminar; identificar os perigos durante o percurso ao longo da estrada; avaliar a importância e potenciais consequências desses perigos; e propor medidas correctivas que sejam eficazes na respectiva mitigação, sem originarem perigos adicionais. Verifica-se, também, a conveniência em dispor de equipas de inspecção, o que permite a troca de opiniões técnicas acerca dos aspectos identificados, o que não sucederá se a ISR for realizada por um único técnico. Por outro lado, a adopção de um hábito de rotatividade na composição das equipas de inspecção permite o fomento de práticas harmonizadas de intervenção. Com o enquadramento acima referido, é possível estruturar um processo de qualificação de inspectores semelhante ao proposto para qualificação de auditores de segurança rodoviária [4].

A elaboração de um relatório formal é importante para transmitir eficazmente aos decisores da administração rodoviária os problemas identificados e as orientações técnicas gerais a seguir para a mitigação das consequências esperadas dos mesmos.

Para se alcançarem completamente os benefícios das ISR, a administração rodoviária em causa deve juntar ao relatório da ISR uma descrição das intervenções
de segurança a realizar para mitigar problemas detectados, bem como uma justificação para a ausência de medidas para os outros perigos identificados.

A composição das equipas inspectoras deve, também, ser identificada nos relatórios.

1.2 Objectivos

Numa infra-estrutura rodoviária aberta ao tráfego surgem, em várias ocasiões, factores de perigo que devem ser detectados e alvo de decisões de intervenção.

Diversos fenómenos contribuem para a alteração das características funcionais de uma infra-estrutura rodoviária: o desgaste dos materiais e equipamentos, por exposição aos elementos atmosféricos e à acção normal do tráfego; o desenvolvimento da vegetação nas zonas bordejantes de uma estrada; a degradação funcional, ou mesmo ruína, devida a vida útil limitada dos produtos industriais (por exemplo lâmpadas dos sinais luminosos) ou ao efeito de acções, que podem ser normais, como o entupimento de sumidouros e valetas, ou excepcionais, como a destruição de elementos de uma barreira de segurança por colisão de um veículo.

Na maioria dos casos, as acções de inspecção corrente – realizadas no âmbito da conservação rodoviária – permitem dar resposta eficaz a este tipo de problemas, nomeadamente no que se refere à reposição das características superficiais dos pavimentos, da visibilidade diurna e nocturna de marcas e sinais verticais, das distâncias de visibilidade e de barreiras de segurança.

No entanto, nem todos os factores de perigo surgidos ao longo do ciclo de vida da infra-estrutura rodoviária podem ser previstos nas fases de concepção, planeamento ou projecto.

O desenvolvimento da rede rodoviária pode criar incoerências entre a função original de um trecho rodoviário e a utilização que, a um dado momento, lhe dão os utentes do sistema de tráfego. Estes desajustes podem tornar inadequadas as características da envolvente rodoviária, do traçado ou do equipamento de segurança. Igualmente, as características da área adjacente à faixa de rodagem
podem ser afectadas pela interferência devida a desenvolvimentos na proximidade da estrada não previstos ou não decididos pelas autoridades.

Por exemplo (ver Figura 1), o crescimento de áreas suburbanas ao longo de uma estrada rural secundária pode alterar as funções da rodovia, conferindo-lhe funções relevantes não directamente relacionadas com o transporte, e transformando-a num arruamento; nesses casos, a rodovia deve ser dotada de passeios e, por vezes, de vias com menor largura do que inicialmente.

Figura 1 – Adaptação à evolução das funções da infra-estrutura rodoviária

Por outro lado, o aperfeiçoamento das normas de projecto rodoviário – designadamente quanto a traçado e sinalização – pode originar diferenças entre os trechos recentemente construídos ou remodelados e os existentes. Estas divergências dificultam a criação, pelos condutores, de expectativas a priori comuns quanto ao uso da estrada, contribuindo para maior diversidade de comportamentos de condução, pelo que devem ser progressivamente corrigidas. Finalmente, refere-se, que a evolução tecnológica pode tomar alguns equipamentos obsoletos, obrigando à substituição dos mesmos, seja por falta de sobressalentes, seja por defeições funcionais ou por incompatibilidade com novas normas.

As ISR incidem sobre estes novos tipos de perigo, não previstos no planeamento e projecto originais da estrada, destinando-se eminentemente a
melhorar o respectivo nível de segurança, através da compatibilização das características das estradas analisadas com as da restante rede rodoviária. Uma vez que a mera restituição das condições iniciais da obra não é garantia suficiente da reposição do nível de segurança original nem da compatibilização do mesmo com os requisitos da sociedade prevalecentes num dado momento, o procedimento de diagnóstico a usar para o fim descrito deve ser diferente do adoptado para a conservação corrente.

1.3 Competências

A realização de ISR é uma tarefa de elevada exigência técnica e para a eficiência da sua aplicação são necessários inspectores com formação adequada, permitindo que dentro da equipa de inspecção exista um conjunto alargado de conhecimentos e competências específicas, nomeadamente:

- Sólidos conhecimentos (distribuídos entre os vários elementos da equipa) nos domínios da segurança e da construção rodoviários (eventualmente do projecto), bem como do comportamento dos respectivos utentes.
- Conhecimento do processo formal da ISR, dos seus vários intervenientes e das respectivas ligações funcionais.
- Independência funcional relativamente aos decisores acerca de aspectos de conservação da estrada, para assegurar os benefícios de uma abordagem ‘externa’2 – sem prejuízo da uniformidade de procedimentos no País – dos problemas de segurança e potenciais perigos específicos da estrada em apreço.
- Consciência de que o objectivo da ISR não é identificar deficiências de manutenção, mas tão somente os problemas de segurança rodoviária que resultem de alterações da função da rodovia, desde a sua abertura ao tráfego, ou de desconformidade com requisitos normativos ou recomendações de boa prática. Tendo em conta a utilidade de propor

2 Com a abordagem ‘externa’ pretendem-se evitar situações de habituação a um perigo, resultantes da frequente exposição ao mesmo.
intervenções no sentido de corrigir ou mitigar os problemas encontrados, é conveniente que os inspectores tenham, para além dos conhecimentos técnicos, bom senso para minimizar os conflitos que possam surgir com os outros intervenientes no processo de inspecção.

- Capacidade para aprender com a informação proveniente da investigação ou de elementos estatísticos relativos ao domínio da segurança.
- Preferencialmente, experiência de intervenção anterior em estudos pormenorizados de acidentes, pois sabe-se que deste modo os técnicos ficam na posse de conhecimentos específicos relativos à estrada, sua sinalização e à respectiva percepção por parte dos condutores.

A ausência de parte dos conhecimentos referidos pode ser suprida com formação específica.

A dimensão desejável para a equipa de inspectores depende principalmente do comprimento de estrada a analisar e da complexidade do tráfego, podendo variar entre dois elementos (para estradas secundárias) e três ou mais elementos (auto-estradas em área urbana, estradas urbanas de Nível I e túneis). Neste último caso dever-se-ão envolver preferencialmente elementos com formações e aptidões específicas, incluindo especialistas de segurança rodoviária com diferentes formações de base (engenheiros, psicólogos etc.) e técnicos de iluminação pública ou de sinalização. A execução de uma ISR por equipas multidisciplinares beneficiará o resultado final em qualquer empreendimento, reconhecendo-se, no entanto, que nem sempre tal se justifica.

Na prática o sucesso de uma inspecção depende da capacidade dos inspectores para utilizarem os seus conhecimentos na análise da ligação rodoviária segundo a perspectiva dos vários utentes da estrada autorizados a circular nela e assim identificar as situações de potenciais conflitos geradores de acidentes.

1.4 Tipos de ISR

É possível estabelecer uma distinção entre três orientações gerais para a execução de ISR: inspecções realizadas de forma periódica, abrangendo a totalidade da rede de estradas e incidindo sobre todos os aspectos de segurança
relevantes (referidos no Capítulo 4); inspecções realizadas de forma periódica, incidindo unicamente sobre um número muito restrito de aspectos de segurança e abrangendo só as rodovias em que os referidos aspectos sejam relevantes; inspecções excepcionais (ad hoc), sem carácter regular, incidindo sobre um ou dois aspectos específicos, que, em dado momento, se verifique deverem ser verificados em todas as estradas de uma região, devido à evolução da sinistralidade relacionada com eles.

Este tipo de abordagem, estratificada, das ISR permite complementar a normal inspecção periódica geral (mas habitualmente com uma baixa frequência de repetição) com inspecções direccionadas para aspectos mais específicos ou requerendo mais frequente acompanhamento (por exemplo, intersecções, passagens para peões ou túneis). Adicionalmente, as inspecções excepcionais permitem diminuir o intervalo de tempo entre o estabelecimento de novos requisitos de segurança e a adaptação da infra-estrutura aos mesmos, bem como corrigir deficiências de concepção ou de construção que se venham a detectar com a supervisão do funcionamento do sistema de tráfego, contribuindo para a desejável homogeneização de soluções para problemas similares. Por exemplo, com a recente entrada em vigor das normas para sistemas de retenção rodoviários (EN 1317-1 a 8) e para segurança passiva das estruturas de suporte do equipamento rodoviário (EN 12767) justifica-se um esforço excepcional de inspecção, destinado a avaliar o grau de conformidade dos sistemas existentes nas estradas do País, e a adequação do nível de protecção por eles disponibilizado às necessidades dos utentes rodoviários.

Na Alemanha o sistema de inspecções de segurança comporta os três tipos de orientações gerais atrás referidos [5]. No Quadro 1 apresentam-se alguns exemplos de tipos de ISR realizados nesse país.
Quadro 1 – Conteúdo e periodicidade das ISR na Alemanha

<table>
<thead>
<tr>
<th>Tipo de ISR</th>
<th>Aspectos abrangidos</th>
<th>Categoria de estrada</th>
<th>Periodicidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periódica</td>
<td>Obstáculos perigosos na AAFR; Sinalização relacionada com segurança rodoviária</td>
<td>Estradas principais (dentro de localidades), estradas federais e auto-estradas</td>
<td>Bienal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(fora de localidades)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rodovias municipais e secundárias (dentro e fora das localidades)</td>
<td>Quadrienal</td>
</tr>
<tr>
<td>Nocturna</td>
<td>Traçado, sinalização e iluminação de interseções e passagens para peões</td>
<td>Arruamentos principais (dentro de localidades); auto-estradas; estradas</td>
<td>Quadrienal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>federais principais, estradas estaduais, estradas municipais (fora de localidades)</td>
<td></td>
</tr>
<tr>
<td>Passagem de nível</td>
<td>Sinalização relacionada com a operação da passagem de nível</td>
<td>Todas as rodovias</td>
<td>Quadrienal</td>
</tr>
<tr>
<td>Túnel</td>
<td>Iluminação, sinalização relacionada com a segurança (rodoviária e não rodoviária) e</td>
<td>Todas as rodovias</td>
<td>Quadrienal</td>
</tr>
<tr>
<td></td>
<td>equipamentos de retenção</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sinalização de orientação</td>
<td>Sinais de orientação e de informação</td>
<td>Todas as rodovias</td>
<td>Quadrienal</td>
</tr>
<tr>
<td>Equipamento de segurança, excepciona de orientação</td>
<td>Sinais e outro equipamento de segurança não abrangido por outras ISR</td>
<td>Todas as rodovias</td>
<td>Quadrienal</td>
</tr>
<tr>
<td>Excepcional</td>
<td>Determinados tipos de sinais ou de equipamentos de segurança Obras</td>
<td>Todas as rodovias</td>
<td>Não periódico</td>
</tr>
</tbody>
</table>

1.5 Periodicidade e critérios de selecção de estradas

Idealmente, as ISR devem ser realizadas de modo a que todas as situações de tráfego relevantes possam ser avaliadas: dia e noite; alvorada e crepúsculo em rodovias com orientação Este-Oeste; Verão e Inverno; períodos lectivos e não lectivos junto a escolas, ou períodos de compras junto a centros comerciais. Na prática, no entanto, na maioria dos casos só são analisadas as situações previsivelmente mais desfavoráveis; este facto aplica-se, em especial, às estradas secundárias, onde, face ao requisito de frequência mínima, não é possível realizar múltiplas inspecções sujeitas a temáticas específicas.
Os procedimentos e a periodicidade de realização das ISR também podem ser diferenciados em função da categoria de rodovia sobre o qual incidem, uma vez que é distinta a natureza dos problemas de segurança consoante esta categoria, devido às diferenças de volumes de tráfego e das características das distribuições de velocidades prevalecentes. Nesta óptica, em Portugal a periodicidade das ISR oscilará entre 2 e 4 anos em auto-estradas e estradas de dupla faixa de rodagem; entre 3 e 5 anos em estradas de faixa de rodagem única com acessos condicionados (Itinerários Principais ou Complementares – IP e IC); entre 5 e 7 anos nas Estradas Nacionais e Estradas Regionais com TMDA não inferior a 4000 veículos; e entre 7 e 10 anos nas Estradas Nacionais e Estradas Regionais com TMDA inferior a 4000 veículos. Um factor relevante a atender durante os primeiros anos de aplicação das ISR relaciona-se com a escassa disponibilidade de recursos humanos adequadamente formados para o efeito, o que torna necessário um pequeno período de transição, com menor frequência de inspecções e eventual recurso à aplicação de critérios de ordenação de prioridades para inspecção.

É possível usar o nível de sinistralidade para definir prioridades de selecção de rodovias a serem objecto de ISR periódicas.

Na Noruega, por exemplo, o nível de sinistralidade das estradas nacionais é avaliado em termos de densidade esperada de vítimas, ou seja, o número esperado de vítimas por quilómetro – em que uma vítima fatal é equivalente a 33 feridos leves. Este indicador também é usado na análise de rede (ver capítulo 2.1), para determinar quais as ligações a serem objecto de diagnóstico de segurança e eventual intervenção. A densidade esperada de vítimas é calculada através do método empírico de Bayes, em que o nível de sinistralidade numa ligação é combinado com o nível médio de sinistralidade nas ligações semelhantes, mediante uma média ponderada dos dois níveis. Tal como no método de detecção de zonas de acumulação de acidentes desenvolvido pelo LNEC para a Rede Rodoviária Nacional, o nível médio de sinistralidade num conjunto de ligações semelhantes é estimado por aplicação de modelos de estimativa de frequências de acidentes multivariados (lanços de 1 km). As estradas são classificadas em três grupos, consoante a densidade esperada de vítimas:

- estradas vermelhas, correspondendo às piores estradas (10% do total);
• estradas amarelas, correspondendo às estradas intermédias (40% do total);
• estradas verdes, correspondendo às estradas mais seguras (50% do total de lanços).

As ISR são realizadas prioritariamente sobre as estradas vermelhas, depois sobre as amarelas e, finalmente, as verdes.

Uma maneira de agilizar a realização das ISR e resolver o problema de assegurar rapidamente cobertura espacial integral da rede rodoviária consiste na utilização de um procedimento bi-fásico: na primeira fase é realizada uma inspecção preliminar (designada de inspecção genérica - ISRg), *in situ*, para detectar os principais problemas de segurança potenciais; na segunda fase é realizada uma inspecção mais pormenorizada (designada de inspecção pormenorizada – ISRp), também no local, de avaliação dos problemas gerais detectados na primeira fase. Com este procedimento é possível atribuir cada uma das fases das ISR a departamentos especializados. Assim, um departamento (ou organismo) pode estar mais direccionado para a supervisão geral da rede rodoviária; enquanto outro – ou outros – pode ser vocacionado para a gestão local da operação de cada ligação.

De acordo com a experiência norueguesa, as inspecções preliminares aos locais podem ser realizadas de forma mais eficiente com o apoio de equipamento de vídeo digital, tendo sido desenvolvido, para o efeito, um sistema informatizado de análise, designado *Vidkon*, em que são obtidas duas fotos da estrada e da AAFR a cada 20 metros. Com o registo fotográfico (ou, eventualmente, em vídeo) os inspectores podem complementar a inspecção *in situ* com uma discussão e avaliação em gabinete dos problemas detectados – com a possibilidade de os analisar repetidas vezes e sem o perigo e a pressão do tráfego circulante [6].

1.6 Custos e benefícios

A realização de ISR envolve três tipos de custos: os custos de execução da inspecção e de elaboração do respectivo relatório; os custos de projecto e de construção das intervenções a realizar; e os custos associados à supervisão da evolução da sinistralidade e à avaliação dos resultados obtidos.
O planeamento e orçamentação das actividades relativas à realização das ISR e da supervisão da evolução da sinistralidade são tarefas relativamente simples para uma administração rodoviária experiente. Na Áustria estimaram-se em 1000 € por quilómetro os custos das inspecções em auto-estrada, excluindo a execução das medidas correctivas; na Noruega o custo médio é da ordem dos 50 000 € por quilómetro de estrada inspecionada, incluindo a execução das medidas correctivas com relação custo-eficácia favorável. De acordo com a experiência portuguesa, uma equipa de inspecção pode analisar 20 a 40 km num único dia, seguido de um ou dois dias de trabalho em gabinete, para elaboração do respectivo relatório. Os valores referidos dependem, no entanto, do número de perigos detectados durante a inspecção [7].

Já a previsão dos custos para construção de medidas correctivas da infraestrutura não se afigura tão simples. Com efeito, em várias ocasiões os perigos detectados nas ISR podem ser mitigados através de medidas de engenharia de baixo custo (ver [8]), não exigindo a expropriação de terreno para aumentar a zona da estrada. No entanto, em diversas circunstâncias a diminuição do impacte sobre a segurança rodoviária dos perigos pode obrigar a intervenções envolvendo investimentos avultados; tal foi, por exemplo o sucedido no caso da transformação em arruamento da estrada representada na Figura 1. De um modo geral, o montante global das verbas orçamentadas para intervenções resultantes das ISR depende das orientações dos operadores rodoviários no que se refere ao equilíbrio entre as actividades de nova construção, conservação corrente e remodelação. Neste enquadramento, as actividades de ISR e o seu financiamento devem ser planeadas de modo a não se verificarem incongruências entre a quantidade de actividades de inspecção realizadas e o volume de medidas de correcção que podem ser efectivamente concretizadas.

É, assim, desejável que haja um conjunto de regras para classificar a prioridade a atribuir a cada tipo de intervenção, que atenda às características dos perigos, a desejável urgência na sua mitigação, aos custos e âmbito da intervenção e que se ajuste ao montante global de investimento destinado a este tipo de actividade.

Na bibliografia técnica há poucas referências a avaliações do impacte das medidas de segurança aplicadas em resultado de ISR; no entanto, as estimativas
reportadas apontam para a efectiva contribuição de tais medidas para a mitigação da sinistralidade ([9] e [10]).

O estudo mais representativo foi realizado na Austrália, onde a análise dos resultados obtidos com actividade de inspecção similar à das ISR como definido neste manual permitiu verificar que a maioria das intervenções propostas (78%) apresentara relações entre os benefícios e os custos superiores a 1.0, e que em 35% dos casos essas relações foram superiores a 10. Neste estudo foram analisadas mais de 250 intervenções [11].
2| RECOMENDAÇÕES TÉCNICAS

2.1 Enquadramento das ISR na Directiva 2008/96/CE

A quantificação do nível de segurança do sistema de transporte baseada na quantificação do número esperado de acidentes, de vítimas ou de danos esperados com o funcionamento do sistema é designada por “segurança objectiva”. Alternativamente, o nível de segurança do sistema de transporte pode ser avaliado através da aceitabilidade social do perigo, por exemplo mediante a qualificação da sensação de perigo dos utentes do sistema, sendo o resultado designado de “segurança subjectiva”. O nível de segurança também pode ser analisado mediante a mera avaliação da conformidade com regras pré-definidas (“segurança nominal”) [12].

Existem basicamente dois paradigmas para a gestão da segurança rodoviária, que Hauer designou por abordagem intuitiva e por abordagem racional [13].

Numa abordagem intuitiva as intervenções são fundamentadas num conjunto de mitos populares sobre segurança rodoviária e no auto-interesse da própria administração que os aplica, pelo que são vocacionadas, sobretudo, para a segurança subjectiva, com o intuito de aumentar o grau de satisfação do público em geral.

Por seu lado, uma gestão de segurança de acordo com a abordagem racional baseia-se no desej idealista de mitigação eficiente do cômputo geral dos danos produzidos pelos acidentes. Nesta abordagem pretende-se que as decisões sejam fundamentadas na previsão das consequências das intervenções e correspondam a um equilíbrio entre os custos e os benefícios; a mitigação da sinistralidade é feita mediante a aplicação dos ensinamentos colhidos através da experiência. Neste tipo de actuação é utilizado o conceito de segurança objectiva, sendo as intervenções fundadas no conhecimento factual existente. Uma particularidade desta abordagem é a avaliação de resultados, como forma de aprender com a experiência proveniente da prática seguida, contribuindo para o progressivo melhoramento quer do conhecimento quer da eficiência das intervenções.
A publicação da Directiva 2008/96/CE do Parlamento Europeu e do Conselho corresponde a uma opção Europeia pela abordagem racional no que se refere à intervenção em segurança rodoviária incidindo sobre a infra-estrututra, em especial a da Rede Transeuropeia.

Esta Directiva estabelece o enquadramento legal das intervenções de segurança da engenharia que incidem sobre a infra-estrutura rodoviária, definindo de forma genérica quatro tipos de procedimentos: a avaliação do impacte sobre a segurança (AISR), a auditoria de segurança rodoviária ao projecto de estradas (ASR), a gestão da segurança da rede (GSR) e a inspecção de segurança (ISR). A AISR é definida como uma análise estratégica comparativa do impacte na segurança da rede rodoviária de uma nova estrada ou de uma modificação substancial da rede existente; a ASR é uma verificação técnica, pormenorizada, sistemática e independente, numa perspectiva de segurança, das características de concepção de um projecto de infra-estrutura rodoviária, abrangendo todas as fases, desde o planeamento até ao funcionamento inicial; a GSR compreende a classificação da segurança da rede e a classificação, por perigo, dos trechos de elevada sinistralidade; a ISR consistirá na “verificação ordinária periódica das características e defeitos que exigem trabalhos de manutenção por motivos de segurança” [14].

A Directiva refere, ainda, a necessidade de os Estados Membros disporem de um sistema de recolha de informação sobre os acidentes fatais e de disponibilizarem os valores dos custos sociais dos acidentes fatais e envolvendo feridos graves, actualizando-os, pelo menos, quinquenalmente.

As intervenções de segurança da engenharia podem ser efectuadas de forma “a priori” ou “a posteriori” (ver Figura 2), consoante a natureza dos indícios usados na fundamentação da identificação das zonas a intervencionar e da selecção das medidas correctivas da segurança. No primeiro caso, as intervenções a priori são fundamentadas no conhecimento pré-existente de factores influentes na sinistralidade e na identificação daqueles que serão mais relevantes nas zonas a corrigir; já a escolha do local e tipo de intervenção a posteriori baseia-se no conhecimento sobre factores genéricos reconhecidamente influentes na sinistralidade (à semelhança do que ocorre com as intervenções a priori), complementado pela informação sobre a sinistralidade efectivamente ocorrida no local a corrigir. As intervenções a posteriori são mais adaptadas ao sistema de
tráfego prevalecente nos locais sobre que incidem, uma vez que combinam o conhecimento geral acerca do fenómeno com a informação sobre os problemas de segurança no local a alterar [12].

Figura 2 – Intervenções na infra-estrutura rodoviária para mitigação da sinistralidade (Adaptado de [12])

As intervenções a priori relacionadas com a infra-estrutura consistem basicamente na realização de estudos de impacte sobre a segurança (AISR³ e ASR) e na execução, preferencialmente com carácter regular, de inspeções de segurança à rede rodoviária aberta ao tráfego. A revisão periódica de normas rodoviárias pode, também, ser considerada como uma intervenção a priori, embora de carácter sobretudo estruturante.

A realização de AISR e de ASR decorre da vantagem em considerar, de forma explícita e tão cedo quanto possível, os aspectos relacionados com a segurança nos processos de decisão sobre investimentos rodoviários, desejavelmente ainda nas fases de concepção, planeamento e de projecto [15].

³ A AISR aplica-se na fase de planeamento, não estando, representada na Figura 2.
No caso das fases de concepção e de planeamento, as AISR são habitualmente realizadas mediante a aplicação de técnicas de avaliação de cenários alternativos, considerando os acidentes de forma autónoma ou incluindo os custos a eles associados como integrando os custos de utilização. A avaliação dos cenários deve incidir sobre os efeitos directos (na ligação em estudo) e indirectos (na restante rede rodoviária).

Nos fases de projecto e de construção, tem-se revelado particularmente eficaz o recurso à auditoria de segurança rodoviária. De acordo com a definição técnica adoptada no manual elaborado no LNEC, uma ASR é “um conjunto de procedimentos destinados a incorporar, de modo explícito e formal, os conhecimentos e informações relativos à segurança rodoviária, no planeamento e projecto de estradas, com as finalidades de mitigar o risco de acidentes e de reduzir as respectivas consequências” [16]. Estes procedimentos podem ser aplicados aos projectos para construção de novos traçados rodoviários ou para remodelação de estradas existentes [16].

Em vários países, as ISR também são integradas nas intervenções a priori. De acordo com a definição deste manual, que corresponde à correntemente aceite em grupos de trabalho internacionais, as ISR consistem na realização, com carácter periódico, de análises a aspectos seleccionados de um trecho de estrada aberta ao tráfego, sob a óptica da segurança, sem considerar explicitamente os acidentes ocorridos nesse trecho. Trata-se, pois, de definir um conjunto de indicadores de segurança relacionados com aspectos passíveis de acção de conservação corrente; de estabelecer os procedimentos (incluindo respectiva periodicidade) para observação, detecção e classificação de desvios, e selecção de tratamentos possíveis; e de definir os critérios de decisão a seguir. A dispensa do uso de dados sobre acidentes pode resultar de efectiva ausência de dados ou de decisão deliberada [17].

Refere-se, no entanto, que nalguns países se entende que nas inspecções de segurança rodoviária se deve utilizar a informação existente acerca dos acidentes ocorridos na estrada a analisar. Nestes casos, as inspecções têm carácter de intervenção a posteriori, sendo muito semelhantes às intervenções em zonas de acumulação de acidentes – diferindo, unicamente, no critério de selecção dos locais a analisar.
As ASR e as ISR contêm, habitualmente, diagnósticos de segurança desprovidos de avaliações quantitativas dos níveis de segurança associados às estradas analisadas. Trata-se de processos formais de mera incorporação da experiência e do conhecimento dos peritos envolvidos. Tal facto, no entanto, não afecta a eficácia dos procedimentos, enquanto instrumentos para intervenção racional em segurança, desde que os inspectores tenham sido alvo de adequada selecção e qualificação.

As acções a posteriori são fundamentadas no conhecimento directo sobre a sinistralidade nos elementos da estrada sobre os quais incidem as intervenções e em elementos rodoviários semelhantes àqueles. Segundo autores britânicos, podem ser agrupadas em quatro grandes tipos de intervenções: tratamento de zonas de acumulação de acidentes (ZAA); tratamento de um itinerário, ou rua; tratamento de grandes áreas, sobretudo urbanas; e a aplicação sistemática de um tipo de tratamento (ou, até, critério normativo novo) a uma estrada, itinerário ou à rede viária de determinada área geográfica [18]. De acordo com a definição teórica adoptada pelo LNEC, as ZAA são “áreas geográficas onde a frequência esperada de acidentes é superior ao previsível, face à distribuição de acidentes em áreas aparentemente semelhantes, por influência de características da infra-estrutura rodoviária específicas à área” [19]. As intervenções correctivas nestas áreas têm, habitualmente, relações custo/benefício bastante favoráveis [8].

Segundo alguns autores, as intervenções poderão ser divididas em intervenções preventivas e curativas, ou, em alternativa, respectivamente, pro-activas e reactivas. Nestas classificações, as intervenções em ZAA são normalmente classificadas como intervenções curativas ou reactivas; as ASR e as ISR são classificadas como intervenções preventivas ou pro-activas. À luz da definição de intervenção apresentada no início deste capítulo, estas classificações são enganadoras, por deficientes, quando aplicadas ao tratamento de ZAA, de itinerários ou de áreas, já que o objectivo destas intervenções é o de prevenir futuros acidentes e não o de mitigar efeitos de acidentes já ocorridos. Acresce que, em grande parte dos casos, as medidas correctivas aplicadas, por exemplo nas ZAA, incidem sobretudo nas fases de pré-embate e embate [18].

As deficiências de classificação atrás referidas têm efeitos especialmente graves ao nível da percepção pelo público em geral da actividade de intervenção em
segurança. Com efeito, é frequente qualificar – em especial nos media – as ASR e ISR como “boas” por serem pró-activas; e a correção de ZAA como “má”, ou pelo menos “não tão boa”, porque é uma intervenção reactiva, supostamente exemplificativa de falta de cuidado por parte das administrações rodoviárias que a elas recorram.

Esta percepção errada do conteúdo e alcance das ferramentas de intervenção em segurança pode originar nos decisores – públicos ou privados – a tentação para atribuir menor relevância à correção de ZAA.

Tal decisão seria lamentável, já que este tipo de intervenção tem dado mostras de estar associado a uma relação custo-eficácia muito favorável, apesar de exigir um sistema eficiente de recolha de dados sobre a estrada e os acidentes, bem como de depender da utilização de ferramentas racionais para análise dos dados e para avaliação do funcionamento do sistema. O facto é que, quando tais ferramentas estão operacionais, a informação assim recolhida também pode ser usada para aumentar o conhecimento sobre os problemas de segurança do sistema de tráfego de cada país.

2.2 Perigos a identificar e a atender

Os aspectos a analisar numa ISR devem ser factores de risco de acidente ou de ferimento reconhecidamente importantes.

Figura 3 – Perigos devidos a falta de conservação corrente

De acordo com a definição apresentada no Capítulo 1.1, uma ISR não se destina a detectar perigos resultantes da falta de conservação da estrada ou dos seus equipamentos (ver Figura 3). Tal não significa que problemas desse tipo
detectados durante uma ISR não devam ser relatados à relevante administração rodoviária, para adequada intervenção correctiva. Na realidade, os procedimentos de ISR devem contemplar a rápida comunicação desses perigos, ainda antes da entrega do relatório da ISR.

Foram identificados seis conjuntos de problemas susceptíveis de serem analisados numa ISR:

a. aspectos ligados à coerência entre a função da estrada e características relevantes do tráfego, designadamente as velocidades, o TMDA e a composição do tráfego;

b. aspectos relacionados com a homogeneidade de traçado;

c. a adequação das distâncias de visibilidade à velocidade do tráfego;

d. as características dos obstáculos perigosos na zona livre da área adjacente à faixa de rodagem (designadamente árvores, postes eléctricos ou de sinalização, valetas profundas e taludes íngremes);

e. aspectos relacionados com a qualidade dos sinais verticais e das marcas rodoviárias, incluindo a visibilidade sob condições diurnas (sombras) e nocturnas (rectroreflectividade);

f. as características superficiais do pavimento, sobretudo quanto a resistência à derrapagem (micro e macrotextura) e irregularidade longitudinal, analisadas pelo menos visualmente.

2.3 Classificação dos perigos

Foi referido no Capítulo 1.6 ser conveniente haver um conjunto de regras gerais para classificar os perigos, de modo a poder atribuir prioridades de intervenção que atendam à gravidade do perigo e à probabilidade da sua activação (desencadeando situações de conflito e eventual acidente), bem como aos custos previsíveis dos potenciais danos e à possível eficácia das medidas correctivas alternativas.

No âmbito das ISR considera-se desejável dotar o inspector com ferramentas que lhe permitam avaliar de forma sistemática, ainda que qualitativa, o risco de
acidente e o nível de gravidade das consequências associadas a um perigo
detectedo. Igualmente, se considerou vantajoso que a referida ferramenta permita
ao inspector alguma liberdade de juízo técnico – sempre desejável quando se
analisam situações existentes –, não o confinando a um conjunto de regras
inflexíveis ou classificações pré-determinadas rígidas.

São definidas quatro classes de gravidade expectável para os acidentes
potencialmente associados aos perigos detectados: fatal, grave, leve e menor. No
primeiro caso consideram-se os acidentes em que é muito elevada a probabilidade
de originarem ferimentos fatais num dos intervenientes (da ordem dos 90%); no
segundo consideram-se os acidentes com probabilidade elevada de originarem
ferimentos fatais (superior a 50%); os acidentes leves correspondem àqueles cuja
transferência de energia dificilmente origina ferimentos fatais; e os acidentes
menores são aqueles em que é baixa a probabilidade de originarem ferimentos
graves nos intervenientes.

Considera-se que os perigos estão associados a uma natureza de acidente
prevalecente, de entre um conjunto de cinco naturezas possíveis: colisão frontal;
colisão lateral; colisão traseira; colisão com ciclista; ou atropelamento. Assim, por
exemplo, uma árvore existente junto à faixa de rodagem é um perigo associado à
uma colisão frontal em recta; já numa curva, esse obstáculo pode ser associado
simultaneamente a uma colisão frontal e a uma colisão lateral.

Para definição da gravidade de cada natureza de colisão consideram-se as
curvas de gravidade de ferimentos em função da velocidade de embate ou da
variação de velocidade no embate, representada aproximadamente pela velocidade
de circulação prevalecente na estrada. No caso dos capotamentos, consideraram-se
níveis de gravidade fatal ou séria, atendendo a que este tipo de acidente envolve
velocidades elevadas ou forças de impacto segundo direcções pouco habituais e
para as quais o projecto de interior dos veículos não é especialmente exaustivo; em
condições normais, os acidentes envolvendo capotamentos têm consequências
graves. Foi, assim, definida a escala apresentada no Quadro 2.

O perigo associado aos acidentes envolvendo capotamentos depende da
velocidade do veículo, do declive da superfície do terreno, da diferença de cotas
envolvida no movimento e da possibilidade de choque com obstáculos perigosos.
São de considerar dois níveis de gravidade em capotamentos (fatal e grave),
cabendo ao inspector decidir em cada caso qual o nível aplicável. Julgamento semelhante é requerido do inspector na classificação da gravidade das colisões que podem ser enquadradas nos níveis “leve” ou “menor” (como, por exemplo as colisões frontais a 50 km/h).

Quadro 2 – Gravidade dos embates, em função da velocidade de circulação dos veículos motorizados e do tipo de embate

<table>
<thead>
<tr>
<th>Capotamento</th>
<th>Colisão frontal</th>
<th>Colisão lateral</th>
<th>Colisão traseira</th>
<th>Colisão com ciclista</th>
<th>Atropelamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatal</td>
<td>*</td>
<td>≥ 110 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 60 km/h</td>
</tr>
<tr>
<td>Grave</td>
<td>*</td>
<td>≥ 90 km/h</td>
<td>≥ 40 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
</tr>
<tr>
<td>Leve</td>
<td>-</td>
<td>≥ 70 km/h</td>
<td>≥ 40 km/h</td>
<td>≥ 30 km/h</td>
<td>≥ 30 km/h</td>
</tr>
<tr>
<td>Menor</td>
<td>-</td>
<td>< 40 km/h</td>
<td>< 30 km/h</td>
<td>< 20 km/h</td>
<td>< 20 km/h</td>
</tr>
</tbody>
</table>

Para qualificação do nível de probabilidade de activação do perigo e, consequentemente, da frequência de ocorrência dos acidentes a ele associados consideram-se como indicadores úteis os valores do tráfego médio diário anual (TMDA), uma vez que esta é a variável habitualmente usada para representar a exposição ao risco. Consideram-se quatro níveis de frequência: rara; ocasional; frequente; e muito frequente.

Idealmente, no caso dos cenários de acidente envolvendo peões e ciclistas, dever-se-iam considerar, para além dos TMDA de veículos motorizados, os correspondentes TMDA dos utentes vulneráveis. Face à reconhecida falta de elementos quantitativos acerca destes TMDA no nosso País, na presente fase de desenvolvimento das ISR só é possível considerar o tráfego de utentes vulneráveis de forma qualitativa (por exemplo, tráfego residual, baixo ou elevado), mediante apreciação subjectiva obtida durante a inspecção in situ ou através de indicadores indirectos (por exemplo, em atravessamento de localidade ou em zona interurbana; na proximidade de centro comercial ou restaurantes, etc.). A fundamentação do nível de tráfego de peões e ciclistas deve ser sempre explicitada no relatório da ISR. Este é um dos aspectos a tentar melhorar em futuras revisões do presente manual, em função dos ensinamentos práticos que serão recolhidos com a execução em regime
normal das ISR. No Quadro 3 apresentam-se as correspondências entre o valor do TMDA de veículos numa estrada e os níveis de frequência de ocorrência de acidentes associados aos respectivos perigos.

Quadro 3 – Probabilidade de ocorrência dos embates, em função do TMDA de veículos motorizados

<table>
<thead>
<tr>
<th>Probabilidade</th>
<th>Raro</th>
<th>Ocasional</th>
<th>Frequente</th>
<th>Muito Frequente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faixa de rodagem única</td>
<td>< 1500</td>
<td>1500 - 3000</td>
<td>3000 – 7500</td>
<td>> 7500</td>
</tr>
<tr>
<td>Dupla faixa de rodagem</td>
<td>< 5000</td>
<td>5000 - 10000</td>
<td>10000 - 19000</td>
<td>> 19000</td>
</tr>
</tbody>
</table>

Com base na gravidade do perigo e da frequência expectável para a sua activação, é possível definir uma classificação para os perigos e associar a cada classe uma recomendação geral, quanto à prioridade a atribuir à execução das medidas para a sua mitigação. O resultado é apresentado no Quadro 4.

Quadro 4 – Qualificação das recomendações acerca das deficiências detectadas

<table>
<thead>
<tr>
<th>Gravidade dos acidentes</th>
<th>Frequência de acidentes</th>
<th>Muito frequente</th>
<th>Frequente</th>
<th>Ocasional</th>
<th>Raro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatal</td>
<td>Obr</td>
<td>Obr</td>
<td>Obr</td>
<td>Nec</td>
<td></td>
</tr>
<tr>
<td>Grave</td>
<td>Obr</td>
<td>Obr</td>
<td>Nec</td>
<td>Rec</td>
<td></td>
</tr>
<tr>
<td>Leve</td>
<td>Obr</td>
<td>Nec</td>
<td>Rec</td>
<td>Opc</td>
<td></td>
</tr>
<tr>
<td>Menor</td>
<td>Nec</td>
<td>Rec</td>
<td>Opc</td>
<td>Opc</td>
<td></td>
</tr>
</tbody>
</table>

Legenda:

- **Obr** - Correcção obrigatória
- **Nec** - Correcção necessária, mesmo se os custos forem elevados
- **Rec** - Correcção necessária, se os custos forem moderados
- **Opc** - Correcção ou mitigação do perigo, se os custos forem baixos

Considera-se que os perigos associados a acidentes fatais, com frequência ocasional ou superior ("**Obr**", no Quadro 4), devem ser necessariamente mitigados,
pelo que as intervenções relacionadas com eles devem ser, obrigatoriamente executadas, com carácter urgente.

Aos perigos com a qualificação de “Nec” correspondem as frequências elevadas de acidentes leves ou raras de acidentes fatais. Trata-se de situações a evitar, pelo que devem ser corrigidas, mesmo quando os custos sejam elevados. As intervenções de segurança não têm carácter urgente; no entanto, devem ser realizadas até ao fim do ano seguinte ao da ISR.

A qualificação “Rec” é atribuída aos perigos associados a acidentes leves ocasionais e a raros acidentes graves. Nestes casos, é recomendável a aplicação de intervenções correctivas, na eventualidade de os respectivos custos serem moderados. Estas intervenções não são urgentes, mas, caso tenha sido decidida a sua execução, devem ser realizadas até ao fim do ano seguinte ao da ISR.

Os perigos associados a acidentes menores ocasionais e a acidentes leves raros são qualificados com a designação “Opc”. A execução de intervenções para mitigar estes perigos só se justifica se os correspondentes custos forem baixos. Estas intervenções também não são urgentes, mas, caso tenha sido decidida a sua execução, devem ser realizadas até ao fim do ano económico seguinte ao da ISR.

Situações especiais podem determinar a alteração da recomendação quanto à prioridade da intervenção; assim, no caso de curvas em planta das classes de homogeneidade “C” e “D” (ver capítulo 2.4.2), deve diminuir-se um nível na classificação da frequência expectável baseada no TMDA (por exemplo, passando do nível “ocasional” para “frequente”); nas curvas em planta de legibilidade difícil também se deve diminuir um nível na classificação da frequência expectável resultante do TMDA; já em rectas em patamar, pode aumentar-se um nível na classificação da frequência expectável resultante do TMDA (passando, por exemplo, do nível “muito frequente” para o nível “frequente”).

2.4 Recomendações de boa prática e requisitos normativos relevantes

Neste capítulo apresentam-se exemplos de perigos identificados durante a realização das ISR piloto e listam-se algumas recomendações de boa prática e requisitos normativos extraídos de publicações recomendadas ou publicadas pelo InIR, de aplicação nas estradas da RRN.
2.4.1 Coerência entre a função da estrada e características do tráfego

Os condutores têm dificuldade em lidar com ambientes rodoviários complexos e desconhecidos, onde, por norma, têm tempos de reacção mais prolongados e frequências de erros maiores do que nos ambientes simples ou conhecidos [30].

Como resultado da experiência e do conhecimento que cada indivíduo vai adquirindo, os estímulos por ele percebidos de forma similar são agrupados em categorias de informação semelhantes. Esta categorização subjectiva do ambiente rodoviário em que se circula e dos sucessivos eventos de condução condiciona as respostas aos estímulos e o tipo de comportamento que os condutores estão naturalmente predispostos a adoptar numa estrada [31].

A rede rodoviária é composta por um conjunto diversificado de trechos de estrada, incluindo auto-estradas destinadas ao tráfego de longa distância a elevada velocidade, arruamentos em zonas residenciais destinados a disponibilizar o acesso a habitações e serviços confinantes com a rua, e outros tipos intermédios de estradas ou arruamentos.

A experiência de diversos países europeus tem demonstrado que aquelas particularidades do comportamento humano podem ser aproveitadas para influenciar o comportamento dos condutores em zonas quer urbanas quer rurais (interurbanas), através da utilização de princípios de traçado homogéneos e coerentes e de intervenções na aparência da estrada, tendentes a diminuir a variabilidade dos ambientes rodoviários que os utentes têm de usar. Este tipo de condicionamentos, designadamente os influentes na escolha das velocidades de circulação, permanece no tempo; igualmente se tem verificado que a expansão das áreas intervencionadas com esta óptica permite reforçar o condicionamento dos comportamentos.

Assim, quando uma estrada originariamente destinada a tráfego interurbano é abrangida pela expansão urbana, e a sua função na rede rodoviária muda, as suas características de perfil transversal devem ser remodeladas, de modo a tornar evidente aos condutores e aos peões a transformação de uma função principal associada à mobilidade para uma função primordialmente de acesso (ver Figura 1).

Basicamente são relevantes para o caso das estradas da Rede Rodoviária Nacional três funções [29]:
a) mobilidade, associada sobretudo ao tráfego de longo curso, sendo expectáveis e permitidas velocidades elevadas, proibidas as velocidades muito baixas e com segregação do tráfego de utentes vulneráveis;

b) acesso, com elevada densidade de entradas e saídas das propriedades marginais à estrada, sendo permitida a mistura de tráfegos (motorizado e não motorizado), e não desejadas as velocidades elevadas, o que pode ser conseguido com recurso a condições especiais de traçado ou à colocação de dispositivos de limitação de velocidade adequados;

c) distribuição, destinada a assegurar a ligação entre as estradas das duas categorias anteriores, e cujas rodovias têm maior frequência de intersecções do que as de função mobilidade e onde só raramente são impostas restrições ao uso por determinado tipo de utentes.

Em estradas em ambiente suburbano, com vias estreitas, os separadores em lâncil de passeio elevado conferem ambiente propício à circulação a velocidades inferiores a 80 km/h, sendo também eficazes na segregação dos sentidos de tráfego.

Separadores típicos de ambientes interurbanos ou de auto-estradas propiciam a escolha de velocidades elevadas, próprias desses ambientes.
As velocidades permitidas, o controlo dos acessos provenientes das propriedades marginais, a largura e o número de vias, a existência de passeios e de paragens de transporte público de passageiros, a velocidade de projecto e as distâncias de visibilidade devem estar de acordo com a função da estrada, havendo recomendações sobre estes aspectos, designadamente em publicações do InIR [29] e da Prevenção Rodoviária Portuguesa [32].

Vias estreitas induzem baixas velocidades de circulação.
Na plataforma de uma estrada em operação, reduções significativas na largura de vias podem ser obtidas por alargamento das bermas (dotadas de lancil baixo ou bandas sonoras junto à faixa de rodagem) ou através da criação de zona central circulável apenas excepcionalmente.

Em atravessamentos de povoação por estradas interurbanas, nas respectivas zonas de entrada e de saída, é importante configurar o ambiente rodoviário para, simultaneamente, alertar os condutores para a alteração das condições de circulação, estabelecer uma fronteira facilmente identificável entre os dois tipos de espaço, e condicionar a escolha de velocidades no espaço mais sensível.

Passeios estreitos não permitem uma segregação conveniente do tráfego de peões e motorizado.
Sinal de identificação de localidade afastado da área realmente urbanizada.

A simples colocação deste sinal não é eficaz na promoção de alterações no comportamento de condução. As zonas de entrada em atravessamentos urbanos devem, por isso, ser dotadas de “portão” e as características marcadamente urbanas (passeios, vias estreitas, etc.) devem ter início nesse “portão”.

O estabelecimento destes “portões” pode ser materializado através de estreitamentos de via, pequenas deflexões no alinhamento das vias de entrada e instalação de painéis informativos ou outros equipamentos que quebrem o fluxo visual sem, no entanto, constituírem obstáculo perigoso para um veículo descontrolado que embata neles (ver 2.4.4). É importante que após a zona de transição, e uma vez transposto o “portão”, o trecho de atravessamento seja dotado de dispositivos que desencorajem as velocidades superiores à velocidade alvo pretendida para a zona e que sejam claramente definidos os espaços destinados à circulação de utentes desprotegidos (passeios e pistas para ciclistas). A decisão acerca do espaçamento entre os referidos dispositivos e o seu dimensionamento físico pode ser apoiada em diversa bibliografia estrangeira e nacional ([34], [35], [36], [37] e [38]). A escolha da velocidade alvo poder ser efectuada recorrendo ao método descrito em publicação da Prevenção Rodoviária Portuguesa [32].

As paragens de transportes públicos de passageiros não devem ser localizadas no interior de intersecções. Em estradas com velocidades superiores a 60 km/h estes equipamentos devem ser dotados de gare de paragem.
2.4.2 Homogeneidade de traçado

O conceito de homogeneidade de traçado está relacionado com a conformidade das características da sucessão de elementos do traçado da estrada às expectativas dos condutores não habituais que nela circulam ([33] e [29]).

Mudanças abruptas nas características geométricas de elementos rodoviários contíguos ou combinações de elementos que não respeitem as expectativas dos condutores acarretam acréscimos súbitos na carga mental associada à tarefa de condução o que pode ampliar a probabilidade de erros quer de percepção ou de interpretação das situações de tráfego quer de decisão.

Curvas com valor de raio anormalmente mais baixo do que o das curvas mais próximas, zonas de supressão de vias ou de separador central, súbitas alterações na largura das vias (localizadas ou não), intersecções e atravessamentos urbanos são zonas de descontinuidade onde se modificam significativamente as condições de condução, ainda que, por vezes, só pontualmente. São, por isso, locais de potencial melhoria da segurança rodoviária por intervenção na infra-estrutura, seja mediante a supressão ou suavização dessas descontinuidades seja através da colocação de sistemas de sinalização que alertem atempadamente os condutores e, nos casos mais graves, os informem relativamente às características de condução desejáveis nessa zona.

Habitualmente as deficiências de homogeneidade de traçado são detectadas em estradas de faixa de rodagem única com traçado antigo, já que a aplicação de normas de traçado recentes permite, regra geral, tratar deste problema ainda na fase de projecto nas estradas modernas, de faixa de rodagem única ou dupla.

O método de avaliação da homogeneidade de traçado em planta preconizado na Norma de Traçado do InIR para estradas de faixa de rodagem única também é aplicável ao caso de estradas em operação ([40] e [29]). Mediante levantamento expedito de características em planta (comprimento das rectas e raio e comprimento das curvas), perfil longitudinal (inclinação e comprimento aproximado dos trainéis) e transversal (largura da faixa de rodagem e tipo e largura das bermas), é possível estimar os diagramas de velocidade e, com base nestes, determinar a classe de homogeneidade das curvas em planta. Estão definidas cinco classes de
As curvas das classes de homogeneidade “O” e “A” não impõem descontinuidades significativas na homogeneidade do traçado, sendo as de classe “O” equiparáveis a trechos rectos para efeitos de sistemas de delineação. Em ambos os casos devem ser verificadas as distâncias de visibilidade de ultrapassagem.

Quadro 5 – Sistema de sinalização de curvas em planta, em função da classe de homogeneidade

<table>
<thead>
<tr>
<th>EQUIPAMENTO</th>
<th>Delineadores e Biais</th>
<th>Sinais verticais</th>
<th>Marcas rodoviárias</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Linha axial e guias normais</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Linha axial e guias normais</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Linha sonora (axial e guias) Marcadores ao eixo</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Linha sonora (axial e guias) Marcadores ao eixo Redução da largura de via</td>
</tr>
</tbody>
</table>

Nota: a velocidade máxima recomendada a afixar corresponde à velocidade não impedida da curva, e pode ser determinada por consulta do diagrama de velocidades não impedidas do traçado.
As curvas de classe de homogeneidade “B” ou “C” correspondem a situações de potencial violação da expectativa *ad hoc* dos condutores. Neste tipo de curvas, a aplicação generalizada do sistema de sinalização referido no Quadro 5 permitirá obter melhorias no comportamento de condução e reduções no risco de acidente, conforme verificado no IP5 [21]. A diminuição da largura da via (através de marcas rodoviárias, conforme referido em 2.4.1) pode contribuir, adicionalmente, para diminuir a velocidade de aproximação a este tipo de curvas, também com efeitos benéficos na sinistralidade. Nos casos de remodelação de estradas existentes, o alinhamento nas imediações de curvas das classes “B” e “C” deve ser corrigido.

As curvas da classe de homogeneidade “D” são descontinuidades de traçado graves, com elevada probabilidade de violação da expectativa dos condutores e grandes acréscimos de risco de acidente. Estas curvas devem ser eliminadas da RRN, em particular nas estradas com velocidades de circulação elevadas. O traçado nas imediações destas curvas deve ser remodelado, designadamente através do aumento do raio da curva em análise, da diminuição do raio das curvas adjacentes ou da redução do comprimento das rectas de aproximação. Em situações excepcionais, devidamente fundamentadas, em que a remodelação de uma curva não seja possível, deve-se: diminuir gradualmente a largura de via nas aproximações, de modo a que as rectas adjacentes tenham desejavelmente largura de via não superior a 3 m; sinalizar a curva de forma especial (ver Quadro 5); e, se possível, eliminar os obstáculos perigosos situados na respectiva área adjacente à faixa de rodagem (em ambos os lados da estrada).

Do ponto de vista da segurança, nas zonas de supressão de vias é recomendável que tal seja feito eliminando a via de velocidade mais elevada (esquerda). Com efeito, é mais fácil a um condutor rápido adaptar a sua velocidade à dos veículos mais lentos que circulam à sua frente e escolher, na via à sua direita, um intervalo entre veículos onde se possa inserir; do que a um condutor de veículo lento identificar, basicamente através do espelho retrovisor, um intervalo entre veículos oportuno para a mudança de via. Do ponto de vista da capacidade de tráfego, também se tem verificado ser mais eficaz efectuar a adição de uma via por

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Expectativas criadas pelos condutores enquanto vão circulando ao longo de uma estrada.</td>
</tr>
</tbody>
</table>
introdução de via adicional à esquerda, já que dessa forma os veículos mais lentos não têm de mudar de via.

Interseções e acessos devem ser facilmente perceptíveis pelos condutores das rodovias atravessadas.

De noite, o trâfego em vias paralelas pode surpreender os condutores que circulam na rodovia principal.

Descontinuidades como intersecções, sinais luminosos, paragens de veículos de transporte público de passageiros, estreitamentos de vias em secções curtas devem ser sinalizadas de forma que permita aos condutores diminuir atempadamente a velocidade de circulação; nos casos mais importantes e de difícil avaliação pelos condutores, a velocidade recomendada deve ser assinalada, como forma de auxiliar a tarefa de condução.
Numa intersecção, a disposição geral e a localização dos ilhéus direccionais deveriam auxiliar a tarefa de condução, o que requer a conformidade com esquemas gerais de desenho facilmente reconhecíveis e a imposição de efectivas restrições à liberdade de escolha de trajectórias.

Preferencialmente, nas zonas de variação de largura de vias em que as alterações não sejam simétricas relativamente ao eixo deve procurar-se que a configuração mais pronunciada corresponda ao sentido com alargamento e não ao do estreitamento.

2.4.3 Adequação das distâncias de visibilidade à velocidade do tráfego

A distância de visibilidade corresponde à “extensão contínua de estrada que o condutor de um veículo pode ver de um dado ponto, quando a sua visão não é interceptada pelo tráfego” [39].

Os requisitos relativamente à distância de visibilidade dependem da natureza do acontecimento a que se referem. Nas situações de emergência, face a um perigo surgido repentinamente, é necessário que o condutor consiga imobilizar a viatura ou que o possa contornar, caso haja espaço disponível para o efeito. Em condições de condução normal importa assegurar a verificação de aspectos como a legibilidade de uma curva, a leitura de um sinal de informação, a circulação numa intersecção e a execução de manobras de ultrapassagem utilizando via do sentido contrário. A verificação das condições de visibilidade pode ser feita recorrendo às recomendações contidas em documento do InIR [50].
Relativamente às distâncias de visibilidade de ultrapassagem em estradas de faixa de rodagem única e dois sentidos, é de referir que as recomendações estabelecidas na Norma de Traçado se referem aos requisitos em fase de projecto, e que estão sobretudo relacionados com a capacidade e a comodidade de condução, através da procura de uma frequência mínima de oportunidades de ultrapassagem. Critérios mais directamente relacionados com a segurança da operação são utilizados na definição das regras de sinalização das zonas em que é permitida a ultrapassagem ([29] e [41]).

Finalmente, devem ser cumpridos os requisitos de visibilidade referentes à legibilidade das características do traçado da estrada (que permitem comportamentos antecipatórios, designadamente face a curvas em planta, intersecções, acessos de terrenos marginais e zonas de estreitamento) e à atempada detecção e leitura de painéis de sinalização.

A avaliação da suficiência das distâncias de visibilidade depende em larga medida da velocidade de circulação, pelo que, na análise das condições vigentes numa estrada em operação, importa conhecer as características da distribuição de velocidades prevalecentes nessa estrada. Um parâmetro dessa distribuição comumente usado para representar a velocidade do tráfego é o correspondente à velocidade que não é ultrapassada por 85% dos condutores (o designado percentil 85 da distribuição de velocidades). Métodos para caracterizar as distribuições de velocidades são apresentados em diversas publicações, nomeadamente numa já referida da PRP [32].
2.4.4 Características da área adjacente à faixa de rodagem e largura da zona livre de obstáculos

Para além da prevenção dos erros dos condutores e de outros utentes rodoviários, o projecto de uma rodovia deve ser norteado, também, pelo princípio de mitigar as consequências dos erros que possam vir a ocorrer.

Está integrada neste último princípio a prevenção de ferimentos graves nos ocupantes dos veículos que saiam desgovernadamente da faixa de rodagem e invadam os terrenos a ela marginais, no âmbito da qual se desenvolveu a noção de área adjacente à faixa de rodagem (AAFR) tolerante segundo a qual a zona potencialmente invadida por veículos descontrolados deve estar livre de obstáculos perigosos. Por vezes, esta situação ideal não pode ser concretizada, pelo que importa delimitar as zonas mais críticas e estabelecer recomendações sobre as características dessas zonas.

Designa-se por zona livre a faixa de terreno contígua à faixa de rodagem que deve estar disponível para ser usada por veículos descontrolados. A largura da zona livre depende das velocidades do tráfego, das características geométricas do

5 “Forgiving roadside”, na terminologia britânica.

6 “Clear zone” ou “safety zone”, na terminologia britânica.
terreno marginal à faixa de rodagem e do volume de tráfego. Para ser eficaz, a zona livre não deve conter obstáculos perigosos. Sendo estes conceitos relativamente novos no espaço europeu, frequentemente numa estrada em operação existem obstáculos na zona livre, relativamente aos quais deve haver uma intervenção, abrangendo progressivamente toda a rede rodoviária, a qual pode consistir numa das seguintes acções (por ordem decrescente de eficácia):

a) Remover o obstáculo para fora da zona livre.
b) Reposicionar o obstáculo, instalando-o em local da AAFR onde seja menor a probabilidade de ser embatido.
c) Reduzir a intensidade de eventuais embates, mediante a utilização de suportes frágeis ou tornando o talude atravessável.
d) Proteger o tráfego, instalando um sistema de retenção de veículos.

Os sinais nas zonas de divergência devem estar dotados de postes frágeis.

Os postes SOS também devem ser instalados de modo a não constituírem obstáculo perigoso. No caso da figura, a abertura na barreira de segurança, necessária para permitir o acesso pedonal, anula o nível de retenção da barreira.
Recomendações relativamente ao dimensionamento das características da AAFR e à selecção e colocação de barreiras de segurança constam de dois relatórios de estudo do LNEC elaborados para o InIR ([42] e [43]).

Uma Zona Livre adequadamente dimensionada mitiga as consequências dos despistes envolvendo a AAFR, permitindo que a maioria dos veículos que se despistam para fora da estrada não saia dessa zona, acutelando situações de capotamento e evitando embates em obstáculos perigosos relativamente aos quais o tráfego não esteja protegido. De acordo com a publicação do InIR, a largura da Zona Livre deve ser de 2.5 m em estradas com velocidade de tráfego de 50 km/h; de 8.0 m nas que têm velocidade de tráfego de 90 km/h; de 10.0 m nas de 100 km/h (faixa única ou dupla); e de 13.0 m em auto-estradas ou estradas com velocidade de tráfego de 120 km/h ou mais [43].

| Exemplo de obstáculos perigosos na zona livre. |
| Alguns dispositivos hidráulicos podem ser dimensionados para serem “atravessáveis” (e não perigosos). |

Na Zona Livre apenas devem existir taludes com inclinação inferior a v:h=1:3 (para evitar capotamentos) e suportes frágeis que cedam facilmente quando atingidos por um veículo descontrolado, de modo a reduzir significativamente a gravidade das colisões com estes dispositivos. A classificação dos suportes de sinalização, de dispositivos de iluminação ou de controlo do tráfego é feita através
da norma CEN-EN 12767 “Passive safety of support structures for road equipment” [44], na qual se recorre a quatro indicadores para classificar o desempenho dos suportes: a classe de velocidade de embate, a categoria de absorção de energia, o nível de segurança dos ocupantes, e a verificação do comportamento do veículo.

Nos casos em que não seja possível assegurar a disponibilização de valores de largura de Zona Livre conformes com as recomendações, devem ser instalados sistemas de retenção de veículos que protejam os ocupantes dos veículos desses perigos.

A montante de ilhéus de portagens devem ser instalados amortecedores de choque.

Os sistemas de retenção de veículos são equipamentos instalados na estrada com o objectivo de reterem os veículos descontrolados, impedindo que eles invadam zonas perigosas. Compreendem as barreiras de segurança, os amortecedores de choque, os terminais, as transições entre sistemas, os muros de guarda e guarda-corpos para peões, bem como os dispositivos de protecção para motociclistas. Actualmente são dimensionados para diferentes níveis de funcionamento, que são definidos de acordo com o conjunto de normas CEN-EN 1317 - Road restraint systems, o qual compreende 8 partes [45]. Basicamente, a classificação de desempenho dos vários sistemas de retenção é feita usando três indicadores: o nível de retenção do sistema, a gravidade do impacto previsível e a deformabilidade do dispositivo.
Realça-se, no entanto, que a instalação de sistemas de retenção é sempre uma solução fraca do ponto de vista da segurança rodoviária, quando comparada com as outras alternativas de intervenção correctiva dos obstáculos perigosos, pelo que só deve ser seleccionada como último recurso. A presença destes dispositivos deve corresponder ao reconhecimento pela administração rodoviária de que a eliminação ou a suavização de um obstáculo perigoso são prática ou economicamente inviáveis, e que é não há alternativa à protecção do tráfego relativamente ao mesmo. A decisão de instalar este tipo de equipamento deve ser fundamentada aplicando os métodos descritos em relatório de estudo elaborado pelo LNEC para o InIR [42].

Em Portugal, o método preconizado pelo InIR para selecção de sistemas de retenção de veículos comporta quatros passos: a identificação dos obstáculos perigosos a considerar e da respectiva tipologia (perigo pontual ou linear); a determinação do nível de retenção do sistema; o cálculo da largura útil necessária, através da localização transversal dos obstáculos perigosos; e a determinação do comprimento do sistema, atendendo ao tipo de sistema e às dimensões do obstáculo perigoso [42].

Em pontes, viadutos e junto a taludes íngremes e elevados deve ser seleccionado um nível de retenção apropriado para veículos pesados.
Os terminais de lancis associados a barreiras de segurança devem ser biselados.

Os sistemas de retenção e respectivas transições devem estar certificados de acordo com a EN 1317.

A definição do nível de retenção é particularmente crítica em locais onde existe perigo acrescido para os utentes da estrada (designadamente taludes íngremes e de elevada altura, pontes e viadutos ou curvas em planta) ou para os habitantes ou instalações e equipamentos nos terrenos contíguos à zona da estrada (como habitações, linhas de caminho de ferro, instalações fabris e armazéns de produtos perigosos ou áreas sensíveis do ponto de vista ambiental). Nestes locais devem ser adoptadas barreiras de segurança caracterizadas por elevados níveis de retenção – H2 ou H4 [42].

A largura útil, ou seja a distância livre de obstáculos atrás de uma barreira de segurança (ou de um amortecedor de choque) é um parâmetro fundamental para o bom funcionamento da mesma em caso de embate, já que se houver interposição de obstáculos nesse espaço é elevado o perigo de os mesmos serem embatidos, invalidando o objectivo da instalação da barreira. Com efeito, esse espaço é necessário para deformação da barreira e para acomodar a intrusão e basculamento dos veículos em resultado do impacto. Assim, deve ser escolhido um sistema de retenção cuja largura útil seja inferior à distância entre o obstáculo e o sistema.
A distância dos obstáculos perigosos às barreiras de segurança deve ser superior à largura útil do sistema de retenção.

Nos ensaios de choque realizados de acordo com a EN 1317 são medidos três parâmetros caracterizadores do risco de lesão para os ocupantes de um veículo que embata num sistema de retenção: o índice de gravidade da aceleração (ASI), a velocidade de impacto da cabeça teórica (THIV), e a desaceleração pós-impacto da cabeça (PHD). Estes parâmetros são usados para definir o nível de gravidade do embate de cada sistema, o qual pode tomar um de três valores possíveis.

Para conferirem o nível de retenção certificado, as barreiras de segurança têm de ter um comprimento mínimo, sem o qual a sua eficácia é pequena e não quantificável.

Pequenas interrupções nas barreiras de segurança são indesejáveis: aumentam o número de terminais e diminuem o nível de retenção.

Para níveis de retenção equivalentes, devem ser seleccionados os sistemas com nível de gravidade do embate mais baixo. Com efeito, uma vez colocadas na estrada, o perigo que as barreiras de segurança representam para os utentes não é
independente do respectivo tipo. Por exemplo, Martin et al verificaram que, nas autoestradas francesas, a probabilidade de óbito por colisão primária com uma barreira de segurança em betão de cimento (do tipo New Jersey, moldada in situ) é dupla da verificada em colisão primária com uma barreira de segurança metálica, do tipo GS4 – com viga em W e postes equidistantes 4 metros [46].

Para funcionarem convenientemente, os sistemas de retenção rodoviários devem ser instalados cumprindo escrupulosamente o especificado nos respectivos documentos de homologação, designadamente quanto às condições de rigidez, desempenho e inclinação do solo nas zonas de aproximação e de funcionamento do sistema. Identicamente, face às elevadíssimas transmissões de energia envolvidas nos choques de veículos (mesmo que ligeiros) com sistemas de retenção, estes, quando do tipo contínuo, devem ser equipados com os dispositivos que assegurem a continuidade do sistema durante e após o embate.

Após embate, os sistemas de retenção não devem apresentar superfícies angulosas. Caso contrário, devem ser reparados em menos de 24 horas, para não constituirem obstáculo mais perigoso do que aquele relativamente ao qual deveriam constituir proteção.
Transições entre zona pavimentada e bermas ou taludes não devem ter ressaltos que instabilizem o controlo das viaturas.

O terreno na zona confinante com os sistemas de retenção não deve ter ressaltos nem declives acentuados.

Uma outra maneira de resolver o problema dos terminais consiste em ligar a barreira que se pretende interromper a uma de outro tipo (o que, por sua vez, obriga à adopção de medidas que solucionem os problemas específicos relacionados com a transição entre as duas barreiras). Por exemplo, frequentemente as barreiras de betão de cimento terminam por transição para barreiras metálicas.

Por vezes interessa garantir que haja continuidade entre barreiras de segurança com características diferentes (designadamente de nível de retenção e de largura útil), por exemplo quando a necessidade de maior nível de retenção é localizada num trecho de pequeno comprimento. Tal continuidade é assegurada através da transição (de acordo com a terminologia da EN 1317). À semelhança das barreiras de segurança, as transições entre sistemas retenção diferentes são certificadas após realização dos ensaios especificados na Parte 4 da EN 1317.
A transição entre tipos diferentes de barreiras de segurança ou entre estas e lancis de passeios deve ser feita com diminuição da deformabilidade das primeiras e sobreposição relativamente às segundas, de acordo com condições especificadas na certificação ao abrigo da EN 1317.

Existem recomendações relativamente à forma como as transições devem ser dimensionadas em Portugal [42]. Genericamente, a classe de retenção de uma transição não poderá ser inferior à classe de retenção inferior, nem superior à classe de retenção superior, das duas barreiras ligadas por essa transição, e a sua largura útil não poderá ser maior do que a maior largura útil das duas barreiras.

O método para selecção dos amortecedores de choque a aplicar em estradas da Rede Rodoviária Nacional é descrito em relatório de estudo do LNEC, elaborado para o InIR [42].

Critérios para a verificação da necessidade de escapatórias e princípios para o dimensionamento e conservação de leitos de paragem são apresentados na Norma de Traçado [40] e no Documento Base da norma de traçado [29]. Este último documento está em fase de conclusão de elaboração no LNEC para o InIR.

2.4.5 Qualidade dos sinais verticais e das marcas rodoviárias

A sinalização instalada na estrada contribui para uma circulação ordenada e previsível do tráfego motorizado e não motorizado. A sinalização rodoviária é constituída pelos sinais verticais, sinais luminosos, sinais de mensagem variável e
Estando a sua utilização enquadrada legalmente, pelo disposto no Código da Estrada (Decreto -Lei n.º 44/2005, de 23 de Fevereiro) e no Regulamento de Sinalização de Trânsito (Dec.Reg. Nº22-A/98, de 1 de Outubro). É neste Decreto Regulamentar (e posteriores revisões, a última das quais através do Decreto Regulamentar n.º 2/2011, de 3 de Março) que são definidos os pictogramas dos sinais e as relações de dimensões autorizadas em estradas públicas do País.

Para assegurar a eficácia da sinalização instalada, esta deve corresponder a uma necessidade bem identificada e transmitir uma mensagem simples e clara; deve, ainda, ser colocada de modo a não só despertar a atenção e favorecer o seu acatamento pelos utentes rodoviários mas também a possibilitar ao utente comum o tempo necessário para uma resposta adequada. No Regulamento de Sinalização do Trânsito são definidas precedências no que se refere à sinalização vertical e horizontal, bem como nos casos das sinalizações permanente e temporária. Apesar de tais disposições resolverem os problemas do ponto de vista jurídico, para que a sinalização cumpra as funções que ditaram a sua instalação na estrada, deve ser assegurado o requisito de coerência entre a sinalização vertical e horizontal.

Os sinais verticais devem ser colocados do lado direito, sendo duplicados do lado esquerdo em faixas de rodagem unidireccionais.

A sinalização não deve apresentar incoerências.
A implantação da sinalização deve ser feita de maneira a garantir que os equipamentos são instalados de acordo com as exigências do tráfego na zona da sua colocação. Os sinais devem ser colocados de modo que a sua conspicuidade não seja afectada por sombras – um problema particularmente relevante no nosso País. Os sinais não devem, também, obstruir a visibilidade da estrada ou de outros sinais nem constituir um obstáculo perigoso em caso de despiste.

As características ópticas dos sinais e marcas viárias encontram-se especificadas em várias normas CEN-EN.

Características de contraste e de rectroreflectividade afectam a conspicuidade e legibilidade diurna e nocturna dos sinais de trânsito.

Recomendações para a selecção das características ópticas dos sinais e marcas rodoviárias e acerca da colocação da sinalização em estradas da RRN são apresentados em várias publicações normativas (ver [41] e Anexo II).
Os sinais não devem sobrepor-se visualmente (constituindo ruído visual); e devem disponibilizar informação completa. Painéis com réguas furtadas devem ser rapidamente substituídos.

2.4.6 Características superficiais do pavimento

As características superficiais dos pavimentos influenciam directamente a capacidade de controlo das acelerações longitudinal e transversal pelos condutores e, indirectamente, o seu comportamento, nomeadamente através da escolha de velocidades. São, por isso, relevantes do ponto de vista da segurança rodoviária.

Os defeitos na regularidade longitudinal têm efeito sobretudo ao nível do conforto de condução, pelo que, habitualmente, não chegam a exercer impacte sobre a sinistralidade, uma vez que são corrigidos antes que a sua magnitude atinja valores suficientes para este efeito. No entanto, quando em elevado grau, as acelerações verticais associadas à insuficiente regularidade longitudinal originam degradações na manobrabilidade e na capacidade de desaceleração dos veículos, que podem comprometer a segurança, em especial quando surgem de forma inesperada ou quando os veículos circulam a velocidades elevadas [47]. É também por este motivo que, em estradas da RRN, não deve ser feito o uso de lombas ou ressaltos como forma de induzir reduções de velocidade de circulação.
Pavimentos degradados obrigam os condutores a concentrarem-se conscientemente na tarefa de controlo, distraindo-os da tarefa de guiamento (em especial quanto à interacção com o restante tráfego). A carga mental de condução resultante é perigosamente elevada.

Em relação ao perfil transversal, a existência de cavado de rodeiras tem influência diferente consoante o pavimento esteja molhado (aumenta o risco de acidente) ou seco (diminui o risco de acidente), quando se comparam pavimentos com e sem esta deficiência [48].

Regra geral, a colocação de uma camada de desgaste nova numa estrada com pavimento degradado deve ser acompanhada de medidas que mitiguem os efeitos negativos sobre a segurança do (previsível) consequente aumento de velocidade de circulação.

De acordo com estudos franceses, valores do coeficiente de atrito abaixo de 0.45 a 0.55 estão associados, em situação normal, a problemas de segurança originados por deficiente resistência à derrapagem. Em locais de maior exigência, como curvas horizontais, entradas de povoação e zonas de mudança de largura da plataforma, os valores do coeficiente de atrito não devem descer abaixo de 0.55 a 0.65. Igualmente se verificou que na aproximação a semáforos ou a intersecções e nas zonas de supressão de via de lentos podem surgir problemas de segurança se os valores do coeficiente de atrito não forem superiores a 0.60 [51]. No Reino Unido,
valores entre 0.30, em auto-estradas, e 0.55, junto a intersecções, curvas com raio inferior a 500 m ou trainéis com mais de 5% de inclinação longitudinal, determinam uma análise pormenorizada do local para verificar a necessidade de melhoria da resistência à derrapagem ou outro tipo de intervenção.

A definição das características superficiais dos pavimentos de estradas com velocidade de projecto elevada (igual ou superior a 90 km/h) deve atender ao risco de ocorrência de fenómenos de hidroplanagem sob condições de chuva habituais. As zonas de disfarce da sobrelevação, sobretudo se associadas a trainéis de grande inclinação, zonas de vias de aceleração ou desaceleração e trechos com três ou mais vias em cada sentido são particularmente vulneráveis.

Superfícies de água estagnada ou escorrente dificultam a circulação nas rodovias, ao diminuírem a resistência à derrapagem e propiciarem fenómenos de hidroplanagem (em especial quando associadas a lama).

No domínio da engenharia rodoviária, a mitigação do risco de hidroplanagem envolve diversas áreas de actuação: a geometria da superfície do pavimento, determinada pelas características de traçado; as características superficiais dos pavimentos, dependentes do dimensionamento da respectiva camada de desgaste e das condições da sua conservação; e o uso de dispositivos de drenagem adequados. Basicamente, há seis tipos de cuidados a atender: disponibilizar adequado gradiente transversal; projectar o traçado da estrada de modo a minimizar o comprimento do percurso de drenagem superficial sobre o pavimento; assegurar que as camadas de desgaste dos pavimentos têm uma superfície com boa macro e microtextura; prever drenagem eficiente (para minimizar a altura da película de água sobre a superfície do pavimento); instalar dispositivos de drenagem eficientes nas curvas de concordância côncavas; e diminuir o risco de formação de poças de água em rodeiras, através de auscultação e conservação dos pavimentos [49].
O recurso a pavimentos drenantes propicia maiores velocidades críticas de hidroplanagem sob condições de chuva (até à saturação da camada de desgaste), bem como melhores condições de visibilidade; infelizmente este tipo de pavimentos também está associado a maiores velocidades de circulação sob condições de chuva [47].

Existem recomendações relativamente à mitigação do risco de hidroplanagem em estradas da RRN [49].

2.5 Utilização de dados sobre a sinistralidade

De acordo com a definição, as ISR são um instrumento apriorístico, pelo que na sua aplicação não é necessária a utilização de dados sobre os acidentes rodoviários ocorridos na rede.

Tal facto, no entanto, não é impeditivo de utilizações pontuais da informação sobre acidentes eventualmente disponível. Tal utilização pode ser efectivada em ambas as fases de desenvolvimento das ISR (ISR genérica e ISR pormenorizada), descritas no capítulo 3.2, ainda que de modos diversos, consoante o nível de decisão (estratégico ou local) envolvido.

Estrategicamente, como já referido (ver capítulo 1.5), é possível usar o nível de sinistralidade para definir as prioridades na selecção de rodovias a serem objecto de ISR periódicas.

Ao nível local, os dados sobre acidentes ocorridos podem ser usados para compreender os mecanismos de produção dos acidentes associados aos perigos detectados e dos respectivos danos físicos, aquando da definição das medidas correctivas a propor no relatório da ISR pormenorizada.

Salienta-se que, face à importância da componente aleatória do fenómeno da sinistralidade, ao baixo número esperado de acidentes nos locais objecto de inspecção pormenorizada e ao carácter apriorístico das ISR em Portugal, a ausência de observação de acidentes não é argumento aceitável para a desvalorização de um perigo identificado numa ISR genérica.
2.6 Supervisão da aplicação das intervenções e dos respectivos resultados

Não tem havido em Portugal a tradição de avaliar de forma sistemática o efeito das intervenções de segurança realizadas no sistema de tráfego, apesar de haver algumas referências sobre resultados de intervenções na EN 6 e no IP 5 ([20] e [21]).

Sabe-se, no entanto, que o efeito destas intervenções é variável em função do contexto rodoviário em que elas são aplicadas, podendo haver diferenças entre os resultados obtidos em diferentes países e, mesmo, em diferentes zonas de um mesmo país. Uma determinada medida correctiva (por exemplo a instalação de lombas para redução de velocidade) é caracterizável por um efeito médio sobre o número de acidentes no local onde é aplicada, mas o efeito real dependerá das características da envolvente rodoviária, do tráfego e da sinistralidade na zona dessa aplicação (por exemplo, as diminuições de velocidade e de acidentes originadas pelas lombas serão pequenas se o pavimento tiver elevada megatextura, ou se aquelas forem instaladas numa zona de elevada sinuosidade em planta). Face a este condicionalismo, na bibliografia científica é habitual apresentar o efeito das intervenções sob a forma de um valor médio esperado ao qual é associado um intervalo de confiança [10].

As intervenções em segurança rodoviária aplicadas na infra-estrutura exercem influência através de duas cadeias causais: uma está associada aos efeitos, visados com a medida de engenharia, sobre os factores de risco determinantes da frequência e da gravidade dos acidentes; a outra está ligada às alterações de comportamento dos utentes do sistema de tráfego rodoviário resultantes da respectiva adaptação às mudanças introduzidas pelas medidas de segurança realizadas. Evans designou a primeira cadeia causal de “efeito de engenharia”; à segunda chamou “efeito do comportamento” (ver Figura 4). Este autor refere, também, que este último efeito pode ditar alterações na real eficácia das intervenções, quando comparada com a expectativa meramente baseada no “efeito de engenharia” da eficácia das mesmas [22].
Para cada intervenção realizada, importa, assim, documentar a evolução do nível de segurança objectiva e de parâmetros relevantes do comportamento do tráfego, tendo em vista não só poder estimar, de forma quantitativa, o efeito da mesma sobre a frequência esperada de acidentes ou de vítimas mas também procurar explicar os mecanismos causais envolvidos nesse efeito. Esta supervisão da aplicação das intervenções e dos respectivos resultados constitui, pois, uma forma de aprender com a experiência proveniente da prática seguida, contribuindo para o progressivo melhoramento quer do conhecimento quer da eficiência das intervenções.

Em geral, a avaliação dos efeitos das intervenções para melhoria da segurança não é feita mediante estudos rigorosamente experimentais, uma vez que as escolhas dos locais a intervencionar e dos tipos de medidas correctivas a executar não são decididas segundo critérios inteiramente aleatórios, por motivos práticos e éticos. Trata-se de estudos de "observação", envolvendo a comparação entre parâmetros correspondentes à situação "antes da intervenção" e os mesmos parâmetros relativos à situação "depois da intervenção". Tais análises são designadas de "estudos antes-depois" (EAD).

Um EAD envolve quatro actividades [24]:

Figura 4 – Mecanismos causais nas intervenções em segurança rodoviária (adaptado de [23])
a) estimar o nível de segurança de um local (ou conjunto de locais) num intervalo de tempo padrão anterior à aplicação da medida correctiva (situação “antes”);

b) estimar, para um intervalo de tempo posterior à referida aplicação, o nível de segurança efectivo (situação “depois real”);

c) estimar, para o mesmo intervalo de tempo posterior à aplicação, o nível de segurança que se teria verificado sem intervenção (situação “depois hipotética”);

d) aplicar um algoritmo de comparação entre a evolução observada e a evolução que teria ocorrido sem intervenção.

Consoante o objectivo desta comparação, os resultados podem ser expressos em termos de variação no número de acidentes (ou de vítimas) ou sob a forma de variação percentual no número de acidentes (ou de vítimas).

As alterações observadas não reflectem unicamente os efeitos das intervenções de segurança efectuadas; habitualmente, também são devidas a efeitos não originados pela medida correctiva e que lhe são exógenos. Se não forem devidamente considerados, estes efeitos perturbadores podem influenciar significativamente a comparabilidade entre medições efectuadas nas duas situações reais (“antes” e “depois real”) e as estimativas realizadas para a situação “depois hipotética” (o que teria acontecido sem intervenção), afectando negativamente o rigor do cálculo de efeitos realizado. De facto, tem-se verificado que a influência destes factores perturbadores tende a exagerar o efeito das intervenções de segurança, podendo as diferenças atingir valores da ordem de 20 a 30% do seu efeito real [25], alterando a natureza das conclusões obtidas.

Destacam-se como particularmente relevantes os seguintes factores perturbadores: o regresso à média; as tendências de longo prazo no número de acidentes e de vítimas; as alterações na percentagem de acidentes registados pelas entidades de fiscalização; a evolução do volume de tráfego; e outros acontecimentos afectando a segurança no período depois.

O fenómeno do regresso à média tem raiz matemática e é explicável através da representação probabilística da frequência de ocorrência de acidentes. Consiste na tendência estatística para, nos períodos subsequentes a um período com
frequências muito afastadas do valor médio, se observarem frequências mais próximas daquele valor. Após um período em que se observem frequências muito elevadas (ou baixas) a tendência normal é que em períodos subsequentes se observem frequências mais baixas (ou altas) do que a inicial.

Uma das formas mais eficazes de mitigar este problema consiste no uso de estimadores estatisticamente mais robustos, desenvolvidos por recurso aos métodos Bayesianos de inferência estatística, combinando os dois tipos de informação disponíveis sobre a segurança de um determinado local: os dados sobre a sinistralidade observada no local e a informação sobre a sinistralidade nos locais semelhantes ao analisado [12]. Os valores anuais assim calculados correspondem à frequência anual esperada de ocorrências, ou seja o número médio anual de ocorrências num período de tempo muito longo.

A consideração do efeito dos outros factores perturbadores não pode ser conseguida exclusivamente por ferramentas matemáticas, uma vez que a sua natureza é eminentemente física.

Existem duas grandes vias para considerar o efeito das tendências de longo prazo no número de acidentes e de vítimas, de outros acontecimentos afectando a segurança no período depois e das tendências no volume de tráfego. A primeira é a da estimação estatística dos efeitos das variáveis perturbadoras; a segunda é o recurso a grupos de controlo. A aplicação da primeira via para avaliação dos efeitos das intervenções decorrentes das ISR é dificultada pela escassez de modelos de matemáticos baseados em informação sobre a sinistralidade do País que permitam a estimação estatística dos efeitos de variáveis perturbadoras.

Deste modo, os EAD para avaliação do efeito das intervenções realizadas na sequência de ISR devem prever o recurso a grupos de controlo e os ajustes para a variação do tráfego médio diário anual.

O recurso a grupos de controlo fundamenta-se em duas hipóteses que importa explicitar: a) as alterações ocorridas nos factores perturbadores, do período “antes” para o “depois”, são idênticas na zona intervencionada e nas zonas do grupo de controlo; b) são iguais os efeitos de idênticas alterações nos factores perturbadores da zona intervencionada e do grupo de controlo.
A escolha do grupo de controlo, por seu lado, obedece a alguns requisitos: um registo histórico de acidentes semelhante ao dos locais intervencionados; um número de acidentes suficientemente grande para que nele o peso das variações aleatórias no número esperado de acidentes seja pequeno; um conjunto de locais não alterados pela medida de segurança em análise. Foi proposta por Hauer uma formalização matemática do primeiro requisito [26].
3| PROCEDIMENTOS PARA REALIZAÇÃO DE ISR

3.1 Introdução

Os procedimentos recomendados para a realização de ISR em Portugal assentam nos resultados da investigação aplicada neste domínio, nomeadamente da realizada no âmbito do projecto europeu RIPCORD, referido no Capítulo 1.

Nesse projecto foi elaborado um conjunto de recomendações gerais para que a adopção das ISR em cada país permita atingir plenamente os objectivos visados com esta ferramenta de gestão da segurança das infra-estruturas rodoviárias [27]. Genericamente as ISR devem permitir identificar os elementos das estradas e do controlo do tráfego que possam contribuir para a ocorrência de acidentes e que sejam susceptíveis de tratamento; o procedimento deve, também, ser realizado de modo que facilite a execução das intervenções decididas e a avaliação dos respectivos efeitos.

Assim, os aspectos a analisar devem ser factores de risco de acidente ou de ferimento reconhecidamente importantes, o que se procurou garantir com as listas de verificações apresentadas no Capítulo 4. Nas fases iniciais da implementação das ISR a disponibilização destas listas de verificação poderá ser útil, como forma de garantir homogeneidade na realização das inspecções; em fases mais avançadas este tipo de listas também pode ser útil, caso as tarefas de pré-análise e de elaboração do relatório sejam objecto de informatização integrada, como na Noruega. Face ao requisito de uma componente de inspecção in situ, a lista de elementos a verificar deve ser selectiva, limitando-se aos aspectos mais importantes no tipo de estrada em análise. Em regra o número de perigos a considerar não deve ser superior a 25.

Por outro lado, os efeitos dos perigos detectados devem ser quantificados ou, quando tal não for possível, avaliados de forma normalizada e tão objectiva quanto possível, o que se consegue através da classificação descrita no Capítulo 2.3.

As ISR devem ser realizadas de uma forma padronizada em ambas as fases (ISRg e ISRp) e os relatórios resultantes devem ter uma estrutura normalizada.
Face ao caráter bifásico da realização de uma ISR, haverá lugar a dois relatórios, um para cada fase, sendo que o relatório da ISRp constitui o relatório final da ISR.

O relatório da ISRg deve contemplar os seguintes aspectos:

a) lista das peças escritas e desenhadas usadas na preparação da inspecção;

b) descrição genérica da forma como a inspecção visual foi realizada;

c) descrição dos problemas detectados.

Na maioria dos casos, o relatório da ISRg não conterá propostas de medidas correctivas para a maioria dos problemas identificados, uma vez que os mesmos ainda terão de ser analisados pormenorizadamente na subsequente ISRp.

O relatório final da ISR, em que são abordados pelo menos todos os problemas identificados na ISRg, deve contemplar os seguintes cinco aspectos:

a) lista das peças escritas e desenhadas usadas na preparação da inspecção;

b) descrição genérica da forma como a inspecção visual foi realizada e o inventário dos ensaios eventualmente realizados em complemento à mesma;

c) descrição dos problemas detectados;

d) proposta de medidas correctivas para cada perigo descrito

e) cópia do relatório de ISRg, em anexo.

3.2 Desenvolvimento geral do processo

A realização de uma ISR é um processo simples, ainda que demorado de completar, que se inicia com a decisão acerca do tipo de inspecção a realizar e da ligação sobre a qual esta incidirá; e que só termina com a conclusão da execução das obras de intervenção decididas. Na realidade, e de acordo com as recomendações de boa prática, mesmo após o termo destas obras, importa garantir que os efeitos sobre a segurança rodoviária sejam avaliados e, só então, a ISR estará verdadeiramente concluída.
Em Portugal a operação das estradas da Rede Rodoviária Nacional está concessionada a operadores privados, cuja actividade é supervisionada pelo Instituto de Infra-estruturas Rodoviárias (InIR, I.P.), que tem função de entidade reguladora. Verificam-se, assim, dois níveis de decisão acerca da RRN: um estratégico, com definição pelo InIR de orientações gerais acerca da estrutura da rede e das características gerais das suas ligações; outro, local, em que cada concessionária define as características particulares das ligações a seu cargo, atendendo às orientações gerais e aos condicionalismos locais prevalecentes nas áreas por elas atravessadas.

Justifica-se, pois, que globalmente o procedimento de execução de ISR também seja estruturado em dois níveis, à semelhança do que se passa na Noruega (ver Capítulo 1.5 e [9]) embora por razões diferentes. Naquele país nórdico, as ISR são faseadas uma vez que não é possível efectuar inspecções completas durante o Inverno, devido à acumulação de neve, pelo que no Verão são recolhidas imagens vídeo que são processadas durante o Inverno, em preparação das inspecções pormenorizadas, que são realizadas na Primavera e Verão.

No caso português, conforme exemplificado na Figura 5, o InIR e as concessionárias realizam – no caso do InIR promove e pontualmente realiza – a primeira fase das ISR (a ISR genérica), com detecção dos principais problemas de segurança potenciais, mediante inspecção visual expedita e registo vídeo ou fotográfico da estrada (faixa de rodagem e AAFR). Os perigos assim identificados numa ligação rodoviária e as correspondentes medidas correctivas genéricas são referidos em relatório próprio, a endereçar à concessionária dessa ligação (no caso de a ISRg ter sido realizada directamente pelo InIR) ou ao serviço competente da operadora (no caso de a ISRg ter sido realizada pela concessionária).
Figura 5 – Esquema sumário da execução do procedimento de realização de ISR na RRN

Na segunda fase, a entidade directamente responsável pela operação da estrada em causa realiza uma ISRp à ligação, analisando em particular os perigos detectados na ISRg (sem prejuízo de abordar outros que venham a ser detectados), no sentido de avaliar a sua efectiva relevância; no caso afirmativo, devem ser definidas as possíveis medidas correctivas e propostas prioridades de intervenção; no caso negativo devem ser explicitadas as fundamentações para que os aspectos sob consideração não sejam considerados como perigos efectivos.
No Quadro 6 e na Figura 5 apresenta-se uma descrição sucinta do conjunto das actividades a desenvolver para execução de ISR, bem como o nível de decisão envolvido em cada uma delas. Neste quadro são contempladas duas actividades – a supervisão da evolução e a avaliação de resultados – que, embora não fazendo parte das ISR propriamente ditas, integram o procedimento à luz das recomendações de boa prática ([9] e [28]).

Quadro 6 – Esquema geral dos procedimentos de execução de uma ISR

<table>
<thead>
<tr>
<th>Actividade</th>
<th>Nível de decisão</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>InIR</td>
</tr>
<tr>
<td>1 Decisão sobre o tipo de ISR (ver Quadro 1)</td>
<td>X</td>
</tr>
<tr>
<td>2 Selecção da(s) ligação(ões) a inspecionar</td>
<td>X</td>
</tr>
<tr>
<td>3.1 Constituição da equipa de inspecção</td>
<td>*</td>
</tr>
<tr>
<td>3.2 Recolha de elementos e reunião de início</td>
<td>*</td>
</tr>
<tr>
<td>3.3 Inspecção de Segurança Rodoviária Genérica (ISRg)</td>
<td>*</td>
</tr>
<tr>
<td>3.4 Elaboração de relatório da ISRg</td>
<td>*</td>
</tr>
<tr>
<td>3.5 Reunião de apresentação dos resultados da ISRg</td>
<td>X</td>
</tr>
<tr>
<td>4.1 Inspecção de Segurança Rodoviária Pormenorizada (ISRp)</td>
<td>ISRp</td>
</tr>
<tr>
<td>4.2 Elaboração de relatório da ISRp</td>
<td>ISRp</td>
</tr>
<tr>
<td>4.3 Decisão sobre intervenções propostas e elaboração de anexos com excepções e com calendarização das intervenções a realizar</td>
<td>ISRp</td>
</tr>
<tr>
<td>4.4 Reunião de apresentação dos resultados da ISRp</td>
<td>X</td>
</tr>
<tr>
<td>4.5 Realização das intervenções</td>
<td>ISRp</td>
</tr>
<tr>
<td>5 Supervisão da evolução do tráfego e da sinistralidade na sequência da aplicação das intervenções</td>
<td>X</td>
</tr>
<tr>
<td>6 Avaliação de resultados (1 ano e 3 anos após)</td>
<td>X</td>
</tr>
</tbody>
</table>

- Nota: ISRg e ISRp a cargo das concessionárias. O InIR pode decidir realizar IRSg, em complemento às realizadas pelas concessionárias.
3.3 Periodicidade

A periodicidade de realização das ISR depende da categoria de estrada sobre a qual incide. Assim, em estradas com maior volume de tráfego médio diário anual (TMDA) ou com velocidades de circulação mais elevadas prevêem-se frequências de inspecção mais pequenas do que as definidas para estradas com baixo TMDA ou menores velocidades de circulação. No Quadro 7 apresenta-se a periodicidade das ISR nos vários tipos de estradas da RRN, salientando-se que os valores aí definidos atendem à previsível escassez em meios humanos com formação adequada existentes nesta fase inicial do processo de aplicação de ISR.

<table>
<thead>
<tr>
<th>Tipo de estrada</th>
<th>TMDA</th>
<th>Periodicidade (anos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>IP ou IC</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>EN ou ER</td>
<td>≥ 4000</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>< 4000</td>
<td>10</td>
</tr>
</tbody>
</table>

As periodicidades referidas no Quadro 7 deverão ser diminuídas para os valores mínimos referidos no Capítulo 1.5, à medida que a realização das ISR se generalize, tirando partido do aumento do número de inspectores de segurança rodoviária adequadamente formados.

3.4 Equipas inspectoras

Conforme já referido no Capítulo 1.3, os inspectores devem ser técnicos experientes, competentes, dotados de bom senso e formalmente qualificados, mediante quer o cumprimento de requisitos de formação base e específica, quer a actualização regular dos conhecimentos sobre factores de risco rodoviário. O inspector deve estar apto a analisar a ligação rodoviária do ponto de vista de todos os utentes autorizados a circular ou a trabalhar na mesma.
A independência dos inspectores face à administração rodoviária é uma questão pertinente ainda em aberto, que se coloca sobretudo na primeira fase das ISR. Com efeito, é na realização das ISR gerais que poderá haver vantagem em dispor de uma visão externa à da entidade reguladora e da operadora da estrada. No entanto, face às atribuições geralmente associadas a uma entidade reguladora – de compatibilização dos pontos de vista dos vários actores no sector regulado – não é evidente a necessidade de formalizar externamente a essa entidade a atrás referida apreciação segundo o ponto de vista dos vários entes autorizados, tanto mais que os problemas decorrentes da habituação ao perigo (por convívio diário com o mesmo) não se colocam, em princípio, no caso dos técnicos da entidade reguladora. Nas ISR pormenorizadas não se afigura haver desvantagens no recurso a técnicos internos às operadoras para avaliar os perigos detectados na fase anterior.

A dimensão das equipas inspectoras poderá variar com as características da ligação, considerando-se, no entanto, que deverão ter o mínimo de dois inspectores. Em casos de especial complexidade, como túneis e pontes especiais, é aconselhável que as equipas integrem especialistas na operação desse tipo de obra.

3.5 Seguimento das ISR

De acordo com o levantamento internacional realizado, o seguimento das ISR é o elemento de boa prática menos cumprido, não tendo sido, por exemplo, devidamente satisfeito em nenhum dos três procedimentos testados no âmbito do projecto RIPCORD, nem convenientemente previsto no manual da AIPCR. Tal facto é negativo, uma vez que garantir a aplicação das intervenções correctivas recomendadas e avaliar os efeitos destas são duas ferramentas para avaliar a eficácia das ISR, no sentido de poder melhorar-se a eficiência do procedimento. Acresce que não há razão para acreditar que o seguimento das ISR, com a dupla óptica descrita, seja impraticável.

Assim, deve existir um mecanismo de seguimento das ISR realizadas, para, simultaneamente, assegurar que os problemas detectados são considerados para intervenção, e avaliar os resultados obtidos com as intervenções efectivamente realizadas, o que permitirá superar uma das actuais lacunas de informação sobre as
ISR [27]. Este mecanismo, como proposto no Quadro 6, deve, preferencialmente, ficar a cargo da entidade reguladora.
4. LISTAS DE VERIFICAÇÕES

As ISR devem ser direcionadas para a identificação de elementos das estradas ou do controlo do tráfego que sejam factores de risco de acidente ou de ferimento reconhecidamente importantes e susceptíveis de tratamento.

Foram identificadas seis categorias de elementos principais:

1) Coerência entre a função da estrada e aspectos relevantes que do tráfego, designadamente as velocidades, o TMAD e a composição do tráfego, quer do traçado, em particular o perfil transversal tipo;

2) Homogeneidade de traçado;

3) ADEQUAÇÃO DAS DISTÂNCIAS DE VISIBILIDADE À VELOCIDADE DO TRÁFEGO;

4) Ausência de obstáculos perigosos na área adjacente à faixa de rodagem, designadamente árvores, postes eléctricos ou de sinalização, valetas profundas e taludes íngremes;

5) Qualidade dos sinais verticais e das marcas rodoviárias, incluindo a visibilidade sob condições diurnas (sombras) e nocturnas (retro reflectividade);

6) Características superficiais do pavimento, sobretudo quanto a resistência à derrapagem (micro e macrotextura) e irregularidade longitudinal.

São possíveis dois tipos de abordagem para a elaboração das listas: num caso é feita únicamente uma descrição genérica das actividades (por exemplo, “verificar adequação da segregação de utentes”), no pressuposto de que o inspector sabe o que inspecionar pormenorizadamente para dar cumprimento cada uma das indicações da lista; no outro método, são fornecidas descrições pormenorizadas dos potenciais perigos a detectar (por exemplo, “verificar existência de passeios, respectiva continuidade, largura, tipo de pavimento e drenagem”). Desde que os inspectores tenham formação específica adequada, ambas as abordagens são possíveis, sem perda de qualidade nas ISR.
A experiência tem demonstrado que os inspectores experientes usam as listas de verificações unicamente para garantir que as inspecções são completas, não havendo omissão de aspectos relevantes. Tal como no caso das auditorias de segurança rodoviária ao projecto de estadas, com a prática, os auditores e inspectores acabam por só usar explicitamente os títulos das listas pormenorizadas.

As listas de verificações elaboradas para este manual estão agrupadas por tipo de problema identificado nas recomendações de boa prática, constituindo conjuntos de fichas autónomos, mas complementares, que se apresentam no Anexo I.
5| PROSSEGUIMENTO DOS TRABALHOS

As inspecções de segurança rodoviária (ISR) são um procedimento de aplicação obrigatória na gestão da segurança da infra-estrutura rodoviária da rede rodoviária transeuropeia, conforme especificado na Directiva 2008/96/CE do Parlamento e do Conselho de 19 de Novembro, e que se enquadra no âmbito da abordagem racional das intervenções em segurança rodoviária incidindo sobre a infra-estrutura prevista, de forma implícita, nessa Directiva.

O presente documento contém, a proposta de um conjunto de condições e recomendações que permitem enquadrar, do ponto de vista técnico, administrativo e regulamentar, aspectos importantes da aplicação das ISR nas estradas da Rede Rodoviária Nacional. O método proposto foi testado em condições reais, mediante a realização de duas ISR piloto em trechos selecionados para o efeito, um dos quais em auto-estrada e o outro em estrada de faixa de rodagem única. Estes testes piloto permitiram melhorar a adequação dos procedimentos de ISR à realidade da gestão da Rede Rodoviária Nacional e desenvolver um programa de formação específica para inspectores de segurança rodoviária elaborado no âmbito do estudo para o InIR.

Estão, assim, reunidas as condições para enquadramento técnico da realização de inspecções de segurança rodoviária a estradas da Rede Rodoviária Nacional.
Lisboa, LNEC, 15 de Abril de 2011

VISTOS

AUTORIA

Eng.º António Lemonde de Macedo
Investigador Coordenador
Director do
Departamento de Transportes

Engº João Lourenço Cardoso
Investigador Principal Habilitado
Chefe do Núcleo de Planeamento, Tráfego e Segurança
6] BIBLIOGRAFIA

[17] Consórcio RIPCORD-ISEREST (2005). Questionnaire on Road Safety Inspections. LNEC/KfV.

ANEXOS
Anexo I – Listas de verificação
<table>
<thead>
<tr>
<th>Nº</th>
<th>Descrição</th>
<th>Visto</th>
<th>Comentários</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A rodovia tem funções transporte primordiais (estrada) ou funções de transporte partilhadas com outras (arruamento)?</td>
<td>Estrada □</td>
<td>Arruamento □</td>
</tr>
<tr>
<td>2</td>
<td>O limite de velocidade está adaptado às funções?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>O acesso de propriedades marginais deve ser controlado?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Em caso afirmativo, é efectivamente controlado?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Os tipos de intersecções são adequados às classes de rodovias intersectantes e aos respectivos tráfegos médios diários anuais?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>É recomendável diminuir o número de cruzamentos e de acessos?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>É recomendável a instalação de iluminação (dentro de localidade, em intersecção de nível ou em nó de ligação)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Se já existe, é adequada?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>É necessária a segregação de utentes vulneráveis?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Em caso afirmativo, existe?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>As passagens para peões estão bem localizadas, são do tipo mais indicado (face às características dos tráfegos e da estrada) e o encaminhamento do tráfego de peões é suficiente?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Os atravessamentos devem ser desnivelados?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>As paragens de transporte público estão bem localizadas?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nº</td>
<td>Descrição</td>
<td>Visto</td>
<td>Comentários</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>10</td>
<td>Os percursos reservados a peões garantem a acessibilidade para todos?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Dentro de localidades, as medidas de acalmaia são adaptadas ao funcionamento pretendido (zona de 50 km/h, zona de 30 km/h ou zona residencial partilhada)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Existem áreas de repouso?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Existem zonas seguras para realização de acções de fiscalização aleatórias à beira da estrada?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>As bermas permitem a paragem de veículos avariados fora da faixa de rodagem? (Aplicável no caso de estradas com limite de velocidade não inferior a 80 km/h).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nº</td>
<td>Descrição</td>
<td>Visto</td>
<td>Comentários</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>As características gerais do trecho em análise são compatíveis com as das</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>estradas ou arruamentos com as quais confina?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>É necessária a instalação de “zona portão”, para marcar alteração</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>desejada nos comportamentos de condução (entrada de atravessamento</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>de localidade)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Os utentes têm a clara percepção de que vão entrar em meio urbano, e de</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>que, em resultado, têm de reduzir a velocidade de circulação?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nota: Esta percepção deve ser dada não apenas pela sinalização mas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>também por alterações sensíveis do ambiente rodoviário, que induzem</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>naturalmente a redução da velocidade.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A zona de portão está bem localizada?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nota: A implantação habitacional e a área de maior tráfego pedonal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>diferem frequentemente dos limites formais dos núcleos urbanos.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>As curvas horizontais de classe de homogeneidade “B”, “C”, ou “D” estão</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>devidamente sinalizadas?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Há zonas de eliminação de vias ou bermas, ou de redução da largura de</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>via? Estão devidamente sinalizadas?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Os trechos de declive longo ou ingreme estão devidamente sinalizados?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lista de Verificações

Homogeneidade de traçado

<table>
<thead>
<tr>
<th>Nº</th>
<th>Descrição</th>
<th>Visto</th>
<th>Comentários</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Em intersecções e nós de ligação as trajectórias estão devidamente canalizadas mediante ilhéus direccionais?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A configuração da intersecção é intuitiva para as várias categorias de utentes?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A largura de vias de tráfego permite a manobra de todos os veículos autorizados?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Em intersecções e nós de ligação os locais dos atravessamentos de peões e ciclistas não surpreendem os condutores de veículos motorizados?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Em rotundas está garantida a condição de deflexão de trajectórias?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>As manobras de ultrapassagem estão impedidas por sinalização nos locais críticos, designadamente junto a intersecções, entradas e saídas de parques de estacionamento e outros locais geradores de tráfego, e zonas de pequena distância de visibilidade?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nº</td>
<td>Descrição</td>
<td>Visto</td>
<td>Comentários</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>Estão asseguradas as condições de perceptibilidade dos pontos singulares, designadamente curvas horizontais, intersecções de nível, acessos a terrenos marginais, zonas de alteração da largura da faixa de rodagem ou das bermas, passagens para peões ou ciclistas, e sinais luminosos?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>As distâncias de visibilidade são adequadas à velocidade do tráfego?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A vegetação existente pode diminuir sazonalmente a visibilidade em locais críticos?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A vegetação pode originar erros de percepção que aumentem o perigo (por exemplo de curvas em planta)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Numa passagem para peões, a visibilidade dos peões que aguardam para atravessar está desimpedida, mesmo que estes sejam crianças (considerar visibilidade mesmo a um metro de altura)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>O espaço disponível para os peões que aguardam para atravessar é suficiente? (Considerar o caso de peões em cadeira de rodas ou a empurrar à mão uma bicicleta)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lista de Verificações

Sinalização

<table>
<thead>
<tr>
<th>Nº</th>
<th>Descrição</th>
<th>Visto</th>
<th>Comentários</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Avaliar a visibilidade da sinalização em termos de:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) contraste relativamente ao fundo;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) possibilidade de encandeamento;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) possibilidade de se confundir com motivos do fundo, devido a excesso de "ruído visual";</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d) obscurecimento por zonas de sombra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>As dimensões dos sinais verticais e das marcas estão de acordo com a categoria da estrada e a velocidade do tráfego?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A qualidade dos sinais verticais e das marcas é adequada? (pictogramas, cor e rectroreflectividade)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>As indicações dos sinais estão correctas?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Faltam sinais?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Há sinais em excesso?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A colocação dos sinais está correcta?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A distância entre sinais permite a sua leitura à velocidade de tráfego (não há acumulação de sinais)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nº</td>
<td>Descrição</td>
<td>Visto</td>
<td>Comentários</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>5</td>
<td>Em passagens pedonais controladas por sinalização luminosa:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) Verificar os tempos de atravessamento dos peões com limitações. Estes peões podem atravessar numa única fase?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Verificar tempos de espera para atravessamento.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Verificar o posicionamento dos sinais luminosos relativamente ao traçado:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) A distância de visibilidade de paragem está garantida para a velocidade do tráfego?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Os sinais estão bem localizados em termos de visibilidade?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) Os condutores são atempadamente informados de que se aproximam de sinalização luminosa?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>É necessária a instalação de painéis de contraste?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>O diâmetro e intensidade luminosa das luzes dos sinais luminosos são adequados à velocidade do tráfego?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Existem vestígios de marcas rodoviárias eliminadas que possam induzir os utentes em erro (de dia ou de noite)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Existe publicidade ilegal que possa distrair os condutores da tarefa de condução?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nº</td>
<td>Descrição</td>
<td>Visto</td>
<td>Comentários</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>A zona livre de obstáculos tem dimensões adequadas à categoria da estrada e à velocidade do tráfego?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Há obstáculos que possam ser removidos?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A transição entre faixa de rodagem e berma não pavimentada é nivelada?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>As valetas têm faces com inclinações suaves?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>As bocas de aqueduto e outros dispositivos de drenagem longitudinal não são agressivos?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Os postes e colunas de iluminação são adequadamente frágeis, em caso de colisão de veículo?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A superfície de corte está a uma altura muito elevada?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Há taludes ou paredes com protuberâncias maiores do que 0.30 m na zona livre?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>As barreiras de segurança são adequadas às características dos embates mais prováveis (dispositivos frontais ou laterais)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>O nível de contenção das barreiras de segurança é adequado?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O comprimento mínimo é cumprido?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A distância ao obstáculo cumpre os requisitos de largura útil?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Há requisitos especiais de contenção de veículos ou carga a satisfazer?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nº</td>
<td>Descrição</td>
<td>Visto</td>
<td>Comentários</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>10</td>
<td>As transições entre tipos de barreiras de segurança diferentes são feitas de acordo com as especificações adequadas?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Os terminais das barreiras de segurança são adequados?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lista de Verificações

<table>
<thead>
<tr>
<th>Nº</th>
<th>Descrição</th>
<th>Visto</th>
<th>Comentários</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>As características superficiais do pavimento são adequadas à categoria da estrada e à velocidade do tráfego?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) quanto `resistência à derrapagem (micro e macrotextura);</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) em termos de irregularidade longitudinal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Há zonas polidas?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Há zonas com ruína do pavimento (buracos, pele de crocodilo ou desagregação)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Há zonas de acumulação de água (poças ou extensos e pouco inclinados percursos de drenagem) que favoreçam a ocorrência de hidroplanagem?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Há pequenas zonas de irregularidade ou de menor resistência à derrapagem que estejam em locais potencialmente críticos para a estabilidade de motociclos e velocipedes?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Deverá ser prevista uma camada superficial antiderrapante no pavimento rodoviário a montante de passagens de peões, de ramos de intersecções de nível ou de outras zonas de eventual necessidade de manobras de diminuição súbita de velocidade?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anexo II – Documentos de referência do Instituto de Infra-estruturas Rodoviárias
Lista baseada na informação disponível no site (acedido em 2011-04-04):

http://www.inir.pt/portal/

SINALIZAÇÃO
Sinalização de Nós de Ligação
Sinalização de Rotundas
Sinalização de Cruzamentos e Entroncamentos
Sinalização de Orientação - Sistema Informativo
Instrução Técnica sobre a utilização da Sinalização de Mensagem Variável
Princípios da Sinalização do Trânsito e Regimes de Circulação
Sinalização Vertical - Características
Sinalização Vertical - Critérios de Utilização
Sinalização Vertical - Critérios de Colocação
Destinos Principais e Pólos Não Classificados
Marcas Rodoviárias - Características Dimensionais, Critérios de Utilização e Colocação
Marcas Rodoviárias - Dispositivos Retrorrefletores Complementares
Sinalização de Proibição de Ultrapassagem

TRAÇADO
Revisão da Norma de Traçado
Dimensionamento de Rotundas - Documento síntese
Mitigação do Risco de Hidroplanagem em Pavimentos Rodoviários
Medidas de Acalma de Tráfego (Volume I) - Medidas Individuais Aplicadas em Atravessamentos de Localidades
ÁREA ADJACENTE À FAIXA DE RODAGEM

Área Adjacente à Faixa de Rodagem – Manual sobre Aspectos de Segurança
Sistemas de Retenção Rodoviários - Manual de Aplicação
Barreiras New-Jersey com valeta adjacente - Condições e parâmetros de segurança

PAVIMENTAÇÃO

Directivas para a concepção de pavimentos - Critérios de dimensionamento
Construção e Reabilitação de Pavimentos - Ligantes Betuminosos
Construção e Reabilitação de Pavimentos - Indicadores de Estado de Conservação dos Pavimentos
Construção e Reabilitação de Pavimentos - Reciclagem de Pavimentos
Anexo III – Relatório de inspecção de segurança rodoviária à EN 234, entre os km 0+000 (Mira) e 14.937 (Cantanhede), a 2010-11-09
RELATÓRIO DE
INSPECÇÃO DE SEGURANÇA RODOVIÁRIA

EN 234
km 0+000 (Mira) a 14.937 (Cantanhede)
2010-11-09
EN 234 – km 0+000 (Mira) – 14.937 (Cantanhede)
2010-11-09

INSPECÇÃO DE SEGURANÇA RODOVIÁRIA

EQUIPA: Engº João Lourenço Cardoso (LNEC)
José Gil (LNEC)

1 – ELEMENTOS CONSULTADOS

1.1 - Projectos

EN 234 – beneficiação entre Mira e Cantanhede (km 0+000 ao km 14+913)

Peças desenhadas:

Drenagem – Intersecção 10

Planta e perfil longitudinal

– Intersecções 8, 9, 10 e 12
– Intersecções 5, 6.1, 6.2, 6.3 e 7
– Intersecções 1, 2, 3 e 4

Geometria

– Intersecção 1 ao km 1+425 e 3 ao km 4+225
– Intersecção 2 ao km 3+808 e 5 ao km 7+825
– Intersecção 4 ao km 5+557
– Intersecção 6.1 ao km 10+000
– Intersecção 6.2 ao km 10+223 e 6.3 ao km 10+407
– Intersecção 7 ao km 11+273
– Intersecção 8 ao km 13+403 com acesso à Z.I.Cantanhede
– Intersecção 9 ao km 14+914

Traçado:

Planta e perfil

– km 0+000 a 1+400
– km 1+400 a 2+800
– km 2+800 a 4+200
– km 4+200 a 5+600
– km 7+000 a 8+400
– km 8+400 a 9+800
– km 9+800 a 11+200
– km 11+200 a 12+600
– km 12+600 a 14+000
– km 14+000 a 15+400

Nota: Os elementos do projecto relativos aos km 0+000 a 1+450 correspondem a traçado que foi, entretanto, substituído por uma variante que entronca a EN 109 a
Norte de Mira, em rotunda. Não foram disponibilizados elementos de projecto relativos ao trecho em referência.

1.2 – Resultados de campanhas de auscultação de características superficiais

Não disponível.

1.3 – Tráfego médio diário anual

2000 – 4575 veículos
2001 – 4758 “
2002 – 4948 “
2003 – 5146 “
2004 – 5352 “
2005 – 5566 “

2 – MEDIÇÕES EFECTUADAS

2.1 - Velocidades

Medições realizadas junto ao km 11+900, em ambos os sentidos.

<table>
<thead>
<tr>
<th>Estatísticas</th>
<th>km/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Média</td>
<td>82</td>
</tr>
<tr>
<td>P85</td>
<td>96</td>
</tr>
<tr>
<td>P15</td>
<td>66</td>
</tr>
<tr>
<td>Máximo</td>
<td>130</td>
</tr>
<tr>
<td>Mínimo</td>
<td>25</td>
</tr>
</tbody>
</table>

Número de medições de velocidade: 173

3 – DESCRIÇÃO GERAL DA ESTRADA

<table>
<thead>
<tr>
<th>Elemento</th>
<th>km inicial</th>
<th>km final</th>
<th>Tipo</th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersecção 0</td>
<td>0.0</td>
<td></td>
<td>Rotunda</td>
<td>Sem elementos de projecto</td>
</tr>
<tr>
<td>Ligação 1</td>
<td>0.0</td>
<td>1.450</td>
<td>Faixa de rodagem única</td>
<td>Sem elementos de projecto Com curvas em planta</td>
</tr>
<tr>
<td>Intersecção 1</td>
<td>1.450</td>
<td></td>
<td>Intersecção</td>
<td>Ilhéus circulares na estrada secundária</td>
</tr>
<tr>
<td>Ligação 2</td>
<td>1.450</td>
<td>2.100</td>
<td>Recta</td>
<td></td>
</tr>
<tr>
<td>Elemento</td>
<td>km inicial</td>
<td>km final</td>
<td>Tipo</td>
<td>Observações</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>Serventia 1</td>
<td>2.100</td>
<td></td>
<td>Intersecção</td>
<td>Ilhéus circulares na estrada secundária</td>
</tr>
<tr>
<td>Ligação 3</td>
<td>2.100</td>
<td>2.850</td>
<td>Intersecção</td>
<td>Área de serviço ao km 2.100 (lado esquerdo) Recta</td>
</tr>
<tr>
<td>Acesso 1</td>
<td>2.850</td>
<td></td>
<td>Intersecção</td>
<td>Ausência de ilhéus na estrada secundária</td>
</tr>
<tr>
<td>Ligação 4</td>
<td>2.850</td>
<td>3.160</td>
<td>Recta</td>
<td></td>
</tr>
<tr>
<td>Serventia 2</td>
<td>3.160</td>
<td></td>
<td>Intersecção</td>
<td>Ilhéus circulares na estrada secundária</td>
</tr>
<tr>
<td>Ligação 5</td>
<td>3.160</td>
<td>3.808</td>
<td>Recta</td>
<td></td>
</tr>
<tr>
<td>Intersecção 2</td>
<td>3.808</td>
<td></td>
<td>Rotunda</td>
<td>EM 629 (dentro de povoação)</td>
</tr>
<tr>
<td>Ligação 6</td>
<td>3.808</td>
<td>4.213</td>
<td>Recta</td>
<td></td>
</tr>
<tr>
<td>Intersecção 3.e</td>
<td>4.213</td>
<td></td>
<td>Intersecção em T</td>
<td>Ilhéu circular; sem viragem à esquerda Estrada secundária</td>
</tr>
<tr>
<td>Intersecção 3.d</td>
<td>4.239</td>
<td></td>
<td>Intersecção em T</td>
<td>Ilhéu circular; sem viragem à esquerda Estrada secundária</td>
</tr>
<tr>
<td>Ligação 7</td>
<td>4.600</td>
<td></td>
<td>Passeios</td>
<td></td>
</tr>
<tr>
<td>Serventia 3</td>
<td>4.820</td>
<td></td>
<td>Rotunda</td>
<td>Fim/início de povoação</td>
</tr>
<tr>
<td>Ligação 8</td>
<td>4.820</td>
<td>5.556</td>
<td>Recta</td>
<td></td>
</tr>
<tr>
<td>Intersecção 4</td>
<td>5.556</td>
<td></td>
<td>Intersecção</td>
<td>Ilhéus circulares na estrada secundária</td>
</tr>
<tr>
<td>Ligação 9</td>
<td>5.556</td>
<td>6.580</td>
<td>Recta</td>
<td></td>
</tr>
<tr>
<td>Serventia 4</td>
<td>6.580</td>
<td></td>
<td>Intersecção</td>
<td>Ilhéus circulares na estrada secundária</td>
</tr>
<tr>
<td>Ligação 9a</td>
<td>6.580</td>
<td>7.200</td>
<td>Recta</td>
<td></td>
</tr>
<tr>
<td>Intersecção 4a</td>
<td>7.200</td>
<td></td>
<td>Rotunda</td>
<td>Estrada secundária</td>
</tr>
<tr>
<td>Ligação 10</td>
<td>7.200</td>
<td>7.824</td>
<td>Recta</td>
<td></td>
</tr>
<tr>
<td>Intersecção 5</td>
<td>7.824</td>
<td></td>
<td>Rotunda</td>
<td>CM1017</td>
</tr>
<tr>
<td>Ligação 11</td>
<td>7.824</td>
<td>8.390</td>
<td>Recta</td>
<td></td>
</tr>
<tr>
<td>Serventia 5</td>
<td>8.200</td>
<td></td>
<td>Passeios</td>
<td></td>
</tr>
<tr>
<td>Ligação 12</td>
<td>8.390</td>
<td>9.250</td>
<td>Recta</td>
<td></td>
</tr>
<tr>
<td>Serventia 6</td>
<td>9.250</td>
<td></td>
<td>Intersecção</td>
<td>Ilhéus circulares na estrada secundária</td>
</tr>
<tr>
<td>Ligação 13</td>
<td>9.250</td>
<td>10.000</td>
<td>Recta</td>
<td>Área de serviço ao km 9.700 (lado direito) Recta</td>
</tr>
<tr>
<td>Intersecção 6.1</td>
<td>10.000</td>
<td></td>
<td>Rotunda</td>
<td>FONTINHA Estrada secundária</td>
</tr>
<tr>
<td>Elemento</td>
<td>km inicial</td>
<td>km final</td>
<td>Tipo</td>
<td>Observações</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>Ligação 14</td>
<td>10.000</td>
<td>10.222</td>
<td>Recta</td>
<td></td>
</tr>
<tr>
<td>Intersecção 6.2</td>
<td>10.222</td>
<td></td>
<td>Intersecção em T</td>
<td>Ilhêus triangulares; sem viragem à esquerda Estrada secundária</td>
</tr>
<tr>
<td>Intersecção 6.3</td>
<td>10.340</td>
<td></td>
<td>Intersecção em T</td>
<td>Ilhêus triangulares; sem viragem à esquerda Estrada secundária</td>
</tr>
<tr>
<td>Ligação 15</td>
<td>10.340</td>
<td>10.575</td>
<td>Recta</td>
<td></td>
</tr>
<tr>
<td>Serventia 7</td>
<td>10.575</td>
<td></td>
<td>Rotunda</td>
<td>Estrada secundária</td>
</tr>
<tr>
<td>Ligação 16</td>
<td>10.575</td>
<td>11.2</td>
<td>Recta</td>
<td></td>
</tr>
<tr>
<td>Intersecção 7</td>
<td>11.272</td>
<td></td>
<td>Intersecção</td>
<td>Ilhêus circulares na estrada secundária</td>
</tr>
<tr>
<td>Ligação 17</td>
<td>11.272</td>
<td>12.200</td>
<td>Recta</td>
<td></td>
</tr>
<tr>
<td>Serventia 8</td>
<td>12.200</td>
<td></td>
<td>Intersecção</td>
<td>Ilhêus circulares na estrada secundária</td>
</tr>
<tr>
<td>Ligação 18</td>
<td>12.200</td>
<td>13.403</td>
<td>Recta</td>
<td></td>
</tr>
<tr>
<td>Intersecção 8</td>
<td>13.403</td>
<td></td>
<td>Rotunda</td>
<td>Estrada secundária</td>
</tr>
<tr>
<td>Ligação 19</td>
<td>13.403</td>
<td>13.600</td>
<td>Recta</td>
<td></td>
</tr>
<tr>
<td>Intersecção 8ab</td>
<td>13.600</td>
<td></td>
<td>Intersecção</td>
<td>Ilhêus triangulares; sem viragens à esquerda (separador) CM 1033</td>
</tr>
<tr>
<td>Ligação 20</td>
<td>13.600</td>
<td>14.913</td>
<td>Curva</td>
<td></td>
</tr>
<tr>
<td>Intersecção 9</td>
<td>14.913</td>
<td></td>
<td>Rotunda</td>
<td>EN 335</td>
</tr>
</tbody>
</table>

Nota: As células sombreadas: a vermelho correspondem a elementos sem projecto disponível; a azul correspondem a atravessamentos de povoação; e a rosa são zonas onde há áreas de serviço.

4 – PERIGOS RELACIONADOS COM A SEGURANÇA RODOVIÁRIA

Nota prévia:

- Entre parênteses indicam-se os números das fotos que apoiam a descrição de alguns problemas: os números romanos referem-se a fotos ilustrando problemas de conservação corrente com impacte directo na segurança rodoviária; os números com algarismos arábicos correspondem às fotos dos aspectos de segurança rodoviária típicos de ISR.
- As fotos referentes a problemas de conservação corrente com impacte significativo na segurança rodoviária constam do Anexo III-1; as fotografias ilustradoras dos aspectos de segurança rodoviária detectados na ISR são apresentadas no Anexo III-2. No Anexo III-3 apresentam-se exemplos de fichas de avaliação dos problemas de segurança detectados.
- Os tipos de problema são definidos adiante, no ponto 5 deste relatório de ISR.
<table>
<thead>
<tr>
<th>Elemento rodoviário</th>
<th>Problema de conservação com efeito na segurança</th>
<th>Aspectos de segurança rodoviária</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Descrição</td>
<td>Foto</td>
</tr>
<tr>
<td></td>
<td>Tipo de prob.</td>
<td>Gravid. Probab. - Avaliação</td>
</tr>
<tr>
<td></td>
<td>Descrição</td>
<td>Acção</td>
</tr>
<tr>
<td>Intersecção 0</td>
<td>A - Rotunda pouco legível por continuidade visual (Foto 06)</td>
<td>G3 – N</td>
</tr>
<tr>
<td></td>
<td>D - Obstáculos no ilhéu central (Foto 06)</td>
<td>G3 – N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alterar ilhéu central</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remove</td>
</tr>
<tr>
<td></td>
<td>B - Falta de homogeneidade de traçado em planta (Fotos 01 e 02)</td>
<td>G3 – N</td>
</tr>
<tr>
<td></td>
<td>D - Guarda de segurança curta (Fotos 03 e 04)</td>
<td>G3 – N</td>
</tr>
<tr>
<td></td>
<td>D - Obstáculos perigosos perto da faixa de rodagem (Fotos 05 e 06)</td>
<td>G3 – N</td>
</tr>
<tr>
<td></td>
<td>D - Valeta em meia cana antecedendo valeta triangular (Fotos 07 e 61)</td>
<td>G3 – N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>verificar classe de homogeneidade e sinalização</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Respeitar comprimento mínimo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remover, suavizar ou proteger tráfego</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tapar e alinhar superfície do terreno com a da berma pavimentada</td>
</tr>
<tr>
<td>Ligação 1</td>
<td>B - Canalização insuficiente dos movimentos permitidos (Foto 08)</td>
<td>F3 – O</td>
</tr>
<tr>
<td></td>
<td>E - Insuficiente eliminação da marcação anterior à remodelação do traçado da intersecção (Foto 03)</td>
<td>G3 – N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alterar layout</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corrigir marcas nas zonas raiadas</td>
</tr>
<tr>
<td>Intersecção 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligação 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serventia 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligação 3</td>
<td>D - Obstáculos perigosos perto da faixa de rodagem (Foto 9)</td>
<td>G3 – N</td>
</tr>
<tr>
<td></td>
<td>D - Postes a 4.10 m da FR (Foto 10)</td>
<td>G3 – N</td>
</tr>
<tr>
<td></td>
<td>B - Estrada paralela (Foto 11)</td>
<td>G4 – R</td>
</tr>
<tr>
<td></td>
<td>D - GS curta (começa 7m antes do pilar) (F12)</td>
<td>G3 – N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Substituir por bocas de aqueduto galgáveis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remover para +6.00 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Criar écran (p.ex. plantas trepadeiras na vedação)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Respeitar comprimentos mínimos</td>
</tr>
<tr>
<td>Acesso 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligação 4</td>
<td>B - Estrada paralela (F11)</td>
<td>G4 – R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Criar écran (p.ex. plantas trepadeiras na vedação)</td>
</tr>
<tr>
<td>Serventia 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligação 5</td>
<td>D - Obstáculos perigosos perto da faixa de rodagem (Foto 13)</td>
<td>G3 – N</td>
</tr>
<tr>
<td></td>
<td>D - Fim de berma sem aviso (F14)</td>
<td>L3 – R</td>
</tr>
<tr>
<td></td>
<td>A - Inicio de povoação antecede a existência de passeios. Falta efeito de portão (Foto 14)</td>
<td>G3 – N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remover, suavizar ou proteger tráfego</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sinalizar início de passeio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inserir elementos para efeito de portão</td>
</tr>
<tr>
<td>Intersecção 2</td>
<td>C - Má visibilidade (de veículos e peões) na aproximação à rotunda (Foto 15)</td>
<td>F3 – O</td>
</tr>
<tr>
<td></td>
<td>A - Passeio estreito (Foto 15)</td>
<td>G4 – R</td>
</tr>
<tr>
<td></td>
<td>E - Ruído visual, originado por alta densidade de sinais, obstruindo-se mutuamente (Foto 16)</td>
<td>F3 – O</td>
</tr>
<tr>
<td></td>
<td>D - Obstáculo perigoso (guarda de segurança desnecessária) na rotunda</td>
<td>L3 – R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limitar de velocidade a 40 km/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remover obstáculos; diminuir velocidade de circulação</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repositionar sinais</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remover guarda de segurança; reposicionar poste de iluminação</td>
</tr>
<tr>
<td>Elemento rodoviário</td>
<td>Problema de conservação com efeito na segurança</td>
<td>Aspectos de segurança rodoviária</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Descrição</td>
<td>Foto</td>
<td>Tipo de probl.</td>
</tr>
<tr>
<td>Ligaçao 6</td>
<td></td>
<td>BA</td>
</tr>
<tr>
<td>Intersecção 3c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersecção 3d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligaçao 7</td>
<td></td>
<td>A D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D D</td>
</tr>
<tr>
<td>Serventia 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligaçao 8</td>
<td></td>
<td>A D</td>
</tr>
<tr>
<td>Intersecção 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligaçao 9</td>
<td></td>
<td>E</td>
</tr>
<tr>
<td>Serventia 4</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Ligaçao 9a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersecção 4a</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>Ligaçao 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersecção 5</td>
<td></td>
<td>Sinal caído</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Guarda de segurança danificada</td>
</tr>
<tr>
<td>Elemento rodoviário</td>
<td>Problema de conservação com efeito na segurança</td>
<td>Aspectos de segurança rodoviária</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Descrição</td>
<td>Foto</td>
<td>Tipo de probl.</td>
</tr>
<tr>
<td>Ligação 11</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Serventia 5</td>
<td>B</td>
<td>Canalização insuficiente dos movimentos permitidos (Foto 08)</td>
</tr>
<tr>
<td>Ligação 12</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Serventia 6</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Ligação 13</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>Intersecção 6.1</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersecção 6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersecção 6.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligação 15</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>Serventia 7</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elemento rodoviário</td>
<td>Problema de conservação com efeito na segurança</td>
<td>Aspectos de segurança rodoviária</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Descrição</td>
<td>Foto</td>
<td>Tipo de prob.</td>
</tr>
<tr>
<td>Intersecção 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descrição</td>
<td>Foto</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>- Deficiente traçado da intersecção, devido à canalização insuficiente dos movimentos permitidos e a ilhêu direcional com formato enganador (Fotos 40, 41 e 42)</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>- Paragem Bus na intersecção (Fotos 41 e 43)</td>
<td></td>
</tr>
<tr>
<td>- Faltam elementos no painel de pré-aviso (Fotos 44 e 45)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F3 – O</td>
<td>Alterar layout</td>
<td></td>
</tr>
<tr>
<td>G3 – N</td>
<td>Reposicionar paragem bus</td>
<td></td>
</tr>
<tr>
<td>Serventia 8</td>
<td>Visibilidade na aproximação Sul devido à vegetação</td>
<td>V</td>
</tr>
<tr>
<td>Descrição</td>
<td>Foto</td>
<td></td>
</tr>
<tr>
<td>F3 – O</td>
<td>Alterar layout</td>
<td></td>
</tr>
<tr>
<td>Ligação 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descrição</td>
<td>Foto</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>- Obstáculos perigosos perto da faixa de rodagem (Fotos 46, 47 e 48)</td>
<td></td>
</tr>
<tr>
<td>- GS curta no fim de talude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G3 – N</td>
<td>Remover, suavizar obstáculo ou proteger tráfego</td>
<td></td>
</tr>
<tr>
<td>G3 – N</td>
<td>Respeitar comprimento mínimo</td>
<td></td>
</tr>
<tr>
<td>Intersecção 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descrição</td>
<td>Foto</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>- Obstáculo perigoso (guarda de segurança desnecessária) na rotunda</td>
<td></td>
</tr>
<tr>
<td>L3 – R</td>
<td>Remover guarda de segurança; reposicionar poste de iluminação</td>
<td></td>
</tr>
<tr>
<td>Ligação 19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descrição</td>
<td>Foto</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>- Guarda de segurança muito curta (Foto 49)</td>
<td></td>
</tr>
<tr>
<td>- Árvores perto da faixa de rodagem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G3 – N</td>
<td>Remover obstáculo</td>
<td></td>
</tr>
<tr>
<td>G3 – N</td>
<td>Respeitar comprimento mínimo</td>
<td></td>
</tr>
<tr>
<td>Intersecção 8ab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descrição</td>
<td>Foto</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>- Canalização insuficiente dos movimentos permitidos (Foto 08)</td>
<td></td>
</tr>
<tr>
<td>F3 – O</td>
<td>Alterar layout</td>
<td></td>
</tr>
<tr>
<td>Ligação 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descrição</td>
<td>Foto</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>- Talude de aterro perigoso (Fotos 50 e 51)</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>- Falta de separação visual entre duas estradas paralelas – especialmente à noite (Foto 51)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>- Obstáculos perigosos perto da faixa de rodagem (Fotos 52, 53 e 47)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>- Guarda de segurança sem cumprir critério de largura útil (Foto 54)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>- Transição abrupta entre pavimento e berma não pavimentada (Fotos 55, 56 e 57)</td>
<td></td>
</tr>
<tr>
<td>G3 – N</td>
<td>Suavizar ou proteger tráfego com guarda de segurança</td>
<td></td>
</tr>
<tr>
<td>G4 – R</td>
<td>Promover plantação de barreira anti-encandeamento arbustiva</td>
<td></td>
</tr>
<tr>
<td>G3 – N</td>
<td>Remover, suavizar obstáculo</td>
<td></td>
</tr>
<tr>
<td>G3 – N</td>
<td>Reposicionar Obstáculo</td>
<td></td>
</tr>
<tr>
<td>G3 – N</td>
<td>Realinhar as superfícies do terreno</td>
<td></td>
</tr>
<tr>
<td>Intersecção 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descrição</td>
<td>Foto</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>- Obstáculo perigoso (guarda de segurança desnecessária) na rotunda (Foto 58)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>- Deficiente transição entre diferentes tipos de guardas de segurança (Foto 59)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>- Percepção da rotunda</td>
<td></td>
</tr>
<tr>
<td>- Deficiente deflexão na rotunda (ramos da EN 234 com raio de 100m – propícios a velocidades de entrada elevadas)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3 – R</td>
<td>Remover guarda de segurança; reposicionar poste de iluminação</td>
<td></td>
</tr>
<tr>
<td>G3 – N</td>
<td>Eliminar guarda de segurança desnecessária</td>
<td></td>
</tr>
<tr>
<td>F3 – O</td>
<td>Alterar o ilhéu central</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gravidade de ferimentos: F – fatal; G – grave; L – leve; M – menor
Probabilidade de eventos: 1 – Muito frequente; 2 – Frequente; 3 – Ocasional; 4 – Raro.
Na definição do nível de prioridade a atribuir à intervenção correspondente a cada problema de segurança identificado foi usada a matriz de avaliação do Manual Técnico para Inspeções de Segurança Rodoviária.

5 – LISTA DE ASPECTOS CONSIDERADOS

De acordo com o definido no Manual Técnico para Inspeções de Segurança Rodoviária, forma analisados os seguintes aspectos:

A. Coerência entre a função da estrada e características relevantes do tráfego (velocidades, TMDA e composição do tráfego) e do uso do solo confinante com a estrada (expectativa a priori);
B. Homogeneidade de traçado (expectativa ad hoc);
C. Adequação das distâncias de visibilidade à velocidade do tráfego;
D. Características da zona livre de obstáculos, na área adjacente à faixa de rodagem;
E. Qualidade da colocação, mensagem e características físicas dos sinais verticais e das marcas rodoviárias;
F. Características superficiais do pavimento, sobretudo quanto a resistência à derrapagem (micro e macrotextura) e irregularidade longitudinal, analisadas pelo menos visualmente.

Mais especificamente, nos trechos entre intersecções foram atendidos os seguintes itens:

- Acessos de terrenos marginais e estradas secundárias (A, B e C);
- Conflitos com animais selvagens (A);
- Drenagem (D e F);
- Marcas rodoviárias (E);
- Sinalização (E);
- Características superficiais dos pavimentos (F);
- Peões e ciclistas (A, C e E);
- Características do perfil transversal tipo (A, B e C);
- Características do perfil longitudinal (A, B e C);
- Características do traçado em planta (A, B e C);
- Características do tráfego de veículos pesados (A, C e E);
- Área adjacente à faixa de rodagem (D).

Na lista anterior indicam-se entre parênteses os aspectos de segurança mais relevantemente afectados pelo item em referência.

Nas intersecções foram analisados os itens discriminados a seguir:

- Acessos de terrenos marginais (A, B e C);
- Drenagem (D e F);
- Marcas rodoviárias (E);
- Sinalização (E);
- Características superficiais dos pavimentos (F);
- Visibilidade (C);
- Peões e ciclistas (A, C e E);
- Características do perfil longitudinal (A, B e C);
- Tipo de intersecção (A e B);
- Características do traçado em planta (A, B e C);
- Área adjacente à faixa de rodagem (D).

Não foram analisados os aspectos relacionados com a iluminação (A e D), pois a inspecção piloto só envolveu inspecção diurna.
ANEXO III-1
PROBLEMAS DE CONSERVAÇÃO CORRENTE COM IMPLICAÇÕES NA SEGURANÇA RODOVIÁRIA
EN 234 – km 0+000 (Mira) – 14.937 (Cantanhede)

2010-11-09

Foto I

Foto II

Foto III

Foto IV

Foto V

Foto VI
ANEXO III-2
PERIGOS RELACIONADOS COM A SEGURANÇA RODOVIÁRIA
EN 234 – km 0+000 (Mira) – 14.937 (Cantanhede)

2010-11-09
ANEXO III-3
EXEMPLOS DE FICHAS DE AVALIAÇÃO DE PERIGOS RELACIONADOS COM A SEGURANÇA RODOVIÁRIA IDENTIFICADOS
EN 234 – km 0+000 (Mira) – 14.937 (Cantanhede)

Aspecto n.º 1

EN 234 – Ligação 1, 3, 15, 18 e 19

Perigo de colisão com obstáculo, devido a comprimento insuficiente da guarda da segurança

Velocidade

<table>
<thead>
<tr>
<th>Capotamento</th>
<th>Frontal</th>
<th>Lateral</th>
<th>Traseiro</th>
<th>Col. Ciclista</th>
<th>Atropelamento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 110 km/h</td>
<td>50 km/h</td>
<td>30 km/h</td>
<td>7 60 km/h</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>7 90 km/h</td>
<td>50 km/h</td>
<td>30 km/h</td>
<td>7 50 km/h</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>7 70 km/h</td>
<td>50 km/h</td>
<td>30 km/h</td>
<td>7 30 km/h</td>
<td></td>
</tr>
<tr>
<td>< 40 km/h</td>
<td>< 30 km/h</td>
<td>< 20 km/h</td>
<td></td>
<td>< 20 km/h</td>
<td></td>
</tr>
</tbody>
</table>

Sessões especiais:

Curvas de classe C e D – 1 nível na frequência esperada

Curvas de legibilidade difícil – 1 nível na frequência esperada

Rectas em patamar – 1 nível na frequência esperada

Situação específica:

- **FATAL**
- **GRAVE**
- **LEVE**
- **MENOR**

Aspecto n.º 2

EN 234 – Ligação 1, 3, 15, 18 e 19

Perigo de colisão frontal após recuperação de controlo em situação de desnível excessivo entre a superfície da faixa de rodagem e a da berma não pavimentada

Velocidade

<table>
<thead>
<tr>
<th>Capotamento</th>
<th>Frontal</th>
<th>Lateral</th>
<th>Traseiro</th>
<th>Col. Ciclista</th>
<th>Atropelamento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 110 km/h</td>
<td>50 km/h</td>
<td>30 km/h</td>
<td>7 60 km/h</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>7 90 km/h</td>
<td>50 km/h</td>
<td>30 km/h</td>
<td>7 50 km/h</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>7 70 km/h</td>
<td>50 km/h</td>
<td>30 km/h</td>
<td>7 30 km/h</td>
<td></td>
</tr>
<tr>
<td>< 40 km/h</td>
<td>< 30 km/h</td>
<td>< 20 km/h</td>
<td></td>
<td>< 20 km/h</td>
<td></td>
</tr>
</tbody>
</table>

Sessões especiais:

Curvas de classe C e D – 1 nível na frequência esperada

Curvas de legibilidade difícil – 1 nível na frequência esperada

Rectas em patamar – 1 nível na frequência esperada

Situação específica:

- **FATAL**
- **GRAVE**
- **LEVE**
- **MENOR**

Correcção

- **OBRIGATÓRIA**
- **NECESSÁRIA**
- **RECOMENDÁVEL**
- **OPCIONAL**
Aspecto n.º 3

EN 234 - Ligação 1; 3, 5, 7, 13, 14, 15, 16, 18, 19, 20

Perigo de colisão com obstáculo perigoso na zona livre

<table>
<thead>
<tr>
<th>Capotamento</th>
<th>Frontal</th>
<th>Lateral</th>
<th>Traseiro</th>
<th>Col. Ciclista</th>
<th>Atropelamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>≥ 110 km/h</td>
<td>7,5 km/h</td>
<td>7,5 km/h</td>
<td>7,5 km/h</td>
<td>7,5 km/h</td>
</tr>
<tr>
<td>*</td>
<td>≥ 80 km/h</td>
<td>7,5 km/h</td>
<td>7,5 km/h</td>
<td>7,5 km/h</td>
<td>7,5 km/h</td>
</tr>
<tr>
<td></td>
<td>≥ 40 km/h</td>
<td>7,5 km/h</td>
<td>7,5 km/h</td>
<td>7,5 km/h</td>
<td>7,5 km/h</td>
</tr>
<tr>
<td></td>
<td>< 40 km/h</td>
<td>5,0 km/h</td>
<td>5,0 km/h</td>
<td>5,0 km/h</td>
<td>5,0 km/h</td>
</tr>
</tbody>
</table>

Faixa de rodagem única

3000 - 1500

Dupla faixa de rodagem

* ≥ 110 km/h | ≥ 80 km/h | ≥ 40 km/h | ≥ 20 km/h | ≥ 20 km/h | ≥ 20 km/h |

Situacões especiais:

- Curvas de classe C e D -1 nível na frequência esperada
- Curvas de legibilidade difícil: -1 nível na frequência esperada
- Rectas em patamar +1 nível na frequência esperada

Velocidade

<table>
<thead>
<tr>
<th>GRAVIDADE</th>
<th>> 1500</th>
<th>13000 - 14000</th>
<th>10000 - 11000</th>
<th>7000 - 8000</th>
<th>< 5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUITO</td>
<td>FREQUENTE</td>
<td>OCASIONAL</td>
<td>RARO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAPOTAMENTO

- Correcção obrigatória
- Correcção necessária, mesmo se os custos forem elevados
- Correcção recomendável (necessária, se os custos forem moderados)
- Correcção ou mitigação do perigo, se os custos forem baixos (facultativa)

Aspecto n.º 4

EN 234 - Interseção 1; Serventias 2, 4, 5, 6, 8 e 8ab

Perigo de colisões laterais e frontais, por canalização insuficiente e singular dos movimentos permitidos

<table>
<thead>
<tr>
<th>Capotamento</th>
<th>Frontal</th>
<th>Lateral</th>
<th>Traseiro</th>
<th>Col. Ciclista</th>
<th>Atropelamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>≥ 110 km/h</td>
<td>7,5 km/h</td>
<td>7,5 km/h</td>
<td>7,5 km/h</td>
<td>7,5 km/h</td>
</tr>
<tr>
<td>*</td>
<td>≥ 80 km/h</td>
<td>7,5 km/h</td>
<td>7,5 km/h</td>
<td>7,5 km/h</td>
<td>7,5 km/h</td>
</tr>
<tr>
<td></td>
<td>≥ 40 km/h</td>
<td>7,5 km/h</td>
<td>7,5 km/h</td>
<td>7,5 km/h</td>
<td>7,5 km/h</td>
</tr>
<tr>
<td></td>
<td>< 40 km/h</td>
<td>5,0 km/h</td>
<td>5,0 km/h</td>
<td>5,0 km/h</td>
<td>5,0 km/h</td>
</tr>
</tbody>
</table>

Faixa de rodagem única

3000 - 1500

Dupla faixa de rodagem

* ≥ 110 km/h | ≥ 80 km/h | ≥ 40 km/h | ≥ 20 km/h | ≥ 20 km/h | ≥ 20 km/h |

Situacões especiais:

- Curvas de classe C e D -1 nível na frequência esperada
- Curvas de legibilidade difícil: -1 nível na frequência esperada
- Rectas em patamar +1 nível na frequência esperada

Velocidade

<table>
<thead>
<tr>
<th>GRAVIDADE</th>
<th>> 1500</th>
<th>13000 - 14000</th>
<th>10000 - 11000</th>
<th>7000 - 8000</th>
<th>< 5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUITO</td>
<td>FREQUENTE</td>
<td>OCASIONAL</td>
<td>RARO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAPOTAMENTO

- Correcção obrigatória
- Correcção necessária, mesmo se os custos forem elevados
- Correcção recomendável (necessária, se os custos forem moderados)
- Correcção ou mitigação do perigo, se os custos forem baixos (facultativa)

Aspecto n.º 5

EN 234 - Interseção 6; Serventia 3

Perigo de colisão com obstáculos no ilhéu central de rotundas

<table>
<thead>
<tr>
<th>Capotamento</th>
<th>Frontal</th>
<th>Lateral</th>
<th>Traseiro</th>
<th>Col. Ciclista</th>
<th>Atropelamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>≥ 210 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 20 km/h</td>
<td>≥ 20 km/h</td>
<td>≥ 20 km/h</td>
</tr>
<tr>
<td>*</td>
<td>≥ 90 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 20 km/h</td>
<td>≥ 20 km/h</td>
<td>≥ 20 km/h</td>
</tr>
<tr>
<td>*</td>
<td>≥ 40 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 20 km/h</td>
<td>≥ 20 km/h</td>
<td>≥ 10 km/h</td>
</tr>
<tr>
<td>*</td>
<td>< 40 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 20 km/h</td>
<td>≥ 20 km/h</td>
<td>≥ 10 km/h</td>
</tr>
</tbody>
</table>

Faixa de rodagem única

3000 - 1500

Dupla faixa de rodagem

* ≥ 210 km/h | ≥ 90 km/h | ≥ 40 km/h | ≥ 20 km/h | ≥ 10 km/h | ≥ 10 km/h |

Situacões especiais:

- Curvas de classe C e D -1 nível na frequência esperada
- Curvas de legibilidade d1 nível na frequência esperada
- Rectas em patamar +1 nível na frequência esperada

Velocidade

<table>
<thead>
<tr>
<th>GRAVIDADE</th>
<th>> 1500</th>
<th>13000 - 14000</th>
<th>10000 - 11000</th>
<th>7000 - 8000</th>
<th>< 5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUITO</td>
<td>FREQUENTE</td>
<td>OCASIONAL</td>
<td>RARO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAPOTAMENTO

- Correcção obrigatória
- Correcção necessária, mesmo se os custos forem elevados
- Correcção recomendável (necessária, se os custos forem moderados)
- Correcção ou mitigação do perigo, se os custos forem baixos (facultativa)
Aspecto n.º 6

EN 234 - Ligações 5 e 7

Perigo de colisão frontal com o início do passeio, não sinalizado

<table>
<thead>
<tr>
<th>Capotamento</th>
<th>Frontal</th>
<th>Lateral</th>
<th>Traseiro</th>
<th>Col. Ciclista</th>
<th>Atropelamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de embate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRAVIDADE</td>
<td>FATAL</td>
<td>GRAVE</td>
<td>LEVE</td>
<td>MUITO</td>
<td>OCASIONAL</td>
</tr>
<tr>
<td>Velocidade</td>
<td>≥ 110 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 30 km/h</td>
<td>≥ 20 km/h</td>
</tr>
</tbody>
</table>

FREQUÊNCIA ESPERADA (em função do TMDA)

<table>
<thead>
<tr>
<th>> 7500</th>
<th>7500 - 3000</th>
<th>3000 - 1500</th>
<th>< 1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faixa de rodagem única</td>
<td>12000</td>
<td>10000</td>
<td>8000</td>
</tr>
<tr>
<td>Dupla faixa de rodagem</td>
<td>15000</td>
<td>13000</td>
<td>11000</td>
</tr>
</tbody>
</table>

Situações especiais:
- Curvas de classe C e D - 1 nível na frequência esperada
- Curvas de legibilidade d-1 nível na frequência esperada
- Rectas em patamar - 1 nível na frequência esperada

Aspecto n.º 7

EN 234 - Ligações 5 e 7

Perigo de atropelamento, por disassociação entre o início da povoação e a sinalização deste bem como por ausência de efeito de portão

<table>
<thead>
<tr>
<th>Capotamento</th>
<th>Frontal</th>
<th>Lateral</th>
<th>Traseiro</th>
<th>Col. Ciclista</th>
<th>Atropelamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de embate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRAVIDADE</td>
<td>FATAL</td>
<td>GRAVE</td>
<td>LEVE</td>
<td>MUITO</td>
<td>OCASIONAL</td>
</tr>
<tr>
<td>Velocidade</td>
<td>≥ 110 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 30 km/h</td>
<td>≥ 20 km/h</td>
</tr>
</tbody>
</table>

FREQUÊNCIA ESPERADA (em função do TMDA)

<table>
<thead>
<tr>
<th>> 7500</th>
<th>7500 - 3000</th>
<th>3000 - 1500</th>
<th>< 1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faixa de rodagem única</td>
<td>12000</td>
<td>10000</td>
<td>8000</td>
</tr>
<tr>
<td>Dupla faixa de rodagem</td>
<td>15000</td>
<td>13000</td>
<td>11000</td>
</tr>
</tbody>
</table>

Situações especiais:
- Curvas de classe C e D - 1 nível na frequência esperada
- Curvas de legibilidade d-1 nível na frequência esperada
- Rectas em patamar - 1 nível na frequência esperada

Aspecto n.º 8

EN 234 - Inteseções 2, 4a, 5, 6, 8 e 9; Serventias 3 e 7

Perigo de colisão frontal com obstáculo (guarda de segurança desnecessária) na zona livre

<table>
<thead>
<tr>
<th>Capotamento</th>
<th>Frontal</th>
<th>Lateral</th>
<th>Traseiro</th>
<th>Col. Ciclista</th>
<th>Atropelamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de embate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRAVIDADE</td>
<td>FATAL</td>
<td>GRAVE</td>
<td>LEVE</td>
<td>MUITO</td>
<td>OCASIONAL</td>
</tr>
<tr>
<td>Velocidade</td>
<td>≥ 110 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 30 km/h</td>
<td>≥ 20 km/h</td>
</tr>
</tbody>
</table>

FREQUÊNCIA ESPERADA (em função do TMDA)

<table>
<thead>
<tr>
<th>> 7500</th>
<th>7500 - 3000</th>
<th>3000 - 1500</th>
<th>< 1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faixa de rodagem única</td>
<td>12000</td>
<td>10000</td>
<td>8000</td>
</tr>
<tr>
<td>Dupla faixa de rodagem</td>
<td>15000</td>
<td>13000</td>
<td>11000</td>
</tr>
</tbody>
</table>

Situações especiais:
- Curvas de classe C e D - 1 nível na frequência esperada
- Curvas de legibilidade d-1 nível na frequência esperada
- Rectas em patamar - 1 nível na frequência esperada
 Aspecto n.º 9
EN 234 - Interseções 4 e 7
Perigo de atropelamento de utentes das paragens de transporte público, por inexistência de passadios e zonas de espera

<table>
<thead>
<tr>
<th>Capotamento</th>
<th>Frontal</th>
<th>Lateral</th>
<th>Col. Ciclista</th>
<th>Atropelamento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥ 110 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 60 km/h</td>
</tr>
<tr>
<td></td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
</tr>
<tr>
<td></td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 30 km/h</td>
</tr>
<tr>
<td></td>
<td>< 40 km/h</td>
<td>< 30 km/h</td>
<td>< 20 km/h</td>
<td>< 20 km/h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Velocidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 110 km/h</td>
</tr>
<tr>
<td>≥ 50 km/h</td>
</tr>
<tr>
<td>≥ 50 km/h</td>
</tr>
<tr>
<td>≥ 60 km/h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRAVIDADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATAL</td>
</tr>
<tr>
<td>GRANDE</td>
</tr>
<tr>
<td>LEVE</td>
</tr>
<tr>
<td>MENOR</td>
</tr>
</tbody>
</table>

FREQUÊNCIA ESPERADA (em função do TMDA): > 7500 - 2500 7500 - 1500 1500 - 500 < 500 Faixa de rodagem única

<table>
<thead>
<tr>
<th>MUITO FREQUENTE</th>
<th>OCASIONAL</th>
<th>RARO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Situações especiais:
Curvas de classe C e D -1 nível na frequência esperada

Capotamento
- Correcção obrigatória
- Correcção recomendável (necessária, se os custos forem moderados)
- Correcção ou mitigação do perigo, se os custos forem baixos (facultativa)

Aspecto n.º 10
EN 234 - Interseções 4 e 7
Perigo de agravamento das consequências de embate nas guardas de segurança, por deficiente transição entre sistemas de retenção diferentes

<table>
<thead>
<tr>
<th>Capotamento</th>
<th>Frontal</th>
<th>Lateral</th>
<th>Col. Ciclista</th>
<th>Atropelamento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥ 110 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 60 km/h</td>
</tr>
<tr>
<td></td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
</tr>
<tr>
<td></td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 30 km/h</td>
</tr>
<tr>
<td></td>
<td>< 40 km/h</td>
<td>< 30 km/h</td>
<td>< 20 km/h</td>
<td>< 20 km/h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Velocidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 110 km/h</td>
</tr>
<tr>
<td>≥ 50 km/h</td>
</tr>
<tr>
<td>≥ 50 km/h</td>
</tr>
<tr>
<td>≥ 60 km/h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRAVIDADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATAL</td>
</tr>
<tr>
<td>GRANDE</td>
</tr>
<tr>
<td>LEVE</td>
</tr>
<tr>
<td>MENOR</td>
</tr>
</tbody>
</table>

FREQUÊNCIA ESPERADA (em função do TMDA): > 1500 1500 - 1000 1000 - 500 < 500 Faixa de rodagem única

<table>
<thead>
<tr>
<th>MUITO FREQUENTE</th>
<th>OCASIONAL</th>
<th>RARO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Situações especiais:
Curvas de classe C e D -1 nível na frequência esperada

Capotamento
- Correcção obrigatória
- Correcção recomendável (necessária, se os custos forem moderados)
- Correcção ou mitigação do perigo, se os custos forem baixos (facultativa)

Aspecto n.º 11
EN 234 - Ligação 1 e 20
De noite, perigo de despiste com saída de estrada ou colisão frontal, por cruzamento com veículo na estrada de serventia

<table>
<thead>
<tr>
<th>Capotamento</th>
<th>Frontal</th>
<th>Lateral</th>
<th>Col. Ciclista</th>
<th>Atropelamento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥ 110 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 60 km/h</td>
</tr>
<tr>
<td></td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
</tr>
<tr>
<td></td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 30 km/h</td>
</tr>
<tr>
<td></td>
<td>< 40 km/h</td>
<td>< 30 km/h</td>
<td>< 20 km/h</td>
<td>< 20 km/h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Velocidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 110 km/h</td>
</tr>
<tr>
<td>≥ 50 km/h</td>
</tr>
<tr>
<td>≥ 50 km/h</td>
</tr>
<tr>
<td>≥ 60 km/h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRAVIDADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATAL</td>
</tr>
<tr>
<td>GRANDE</td>
</tr>
<tr>
<td>LEVE</td>
</tr>
<tr>
<td>MENOR</td>
</tr>
</tbody>
</table>

FREQUÊNCIA ESPERADA (em função do TMDA): > 1500 1500 - 1000 1000 - 500 < 500 Faixa de rodagem única

<table>
<thead>
<tr>
<th>MUITO FREQUENTE</th>
<th>OCASIONAL</th>
<th>RARO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Situações especiais:
Curvas de classe C e D -1 nível na frequência esperada

Capotamento
- Correcção obrigatória
- Correcção recomendável (necessária, se os custos forem moderados)
- Correcção ou mitigação do perigo, se os custos forem baixos (facultativa)
Aspecto n.º 12
EN 234 - Ligações 16 e 17
Perigo de colisões traseiras ou laterais, por decisão tardia ao nível da navegação

Situações especiais:
- Curvas de classe C e D -1 nível na frequência esperada
- Curvas de legibilidade difícil: -1 nível na frequência esperada
- Rectas em patamar: +1 nível na frequência esperada

Capotamento:

<table>
<thead>
<tr>
<th>Tipo de embate</th>
<th>Frontal</th>
<th>Lateral</th>
<th>Traseiro</th>
<th>Colisão Ciclista</th>
<th>Atropelamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUITO FREQUENTE</td>
<td>≥ 110 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 20 km/h</td>
</tr>
<tr>
<td>FREQUENTE</td>
<td>≥ 50 km/h</td>
<td>< 30 km/h</td>
<td>< 20 km/h</td>
<td>< 20 km/h</td>
<td></td>
</tr>
</tbody>
</table>

Velocidade
- **≥ 110 km/h**
- **≥ 50 km/h**
- **≥ 30 km/h**
- **≥ 20 km/h**
- **≥ 10 km/h**

<table>
<thead>
<tr>
<th>GRAVIDADE</th>
<th>FREQUÊNCIA ESPERADA (em função do TMDA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATAL</td>
<td>> 7500</td>
</tr>
<tr>
<td>GRAVE</td>
<td>7500 - 3000</td>
</tr>
<tr>
<td>LEVE</td>
<td>3000 - 1500</td>
</tr>
<tr>
<td>MENOR</td>
<td>< 1500</td>
</tr>
</tbody>
</table>

Faixa de rodagem
- Faixa de rodagem única
- Dupla faixa de rodagem

Aspecto n.º 13
EN 234 - Ligação 12; Intersecção 2
Perigo de colisões traseiras ou laterais, por decisão tardia ao nível da navegação

Situações especiais:
- Curvas de classe C e D -1 nível na frequência esperada
- Curvas de legibilidade difícil: -1 nível na frequência esperada
- Rectas em patamar: +1 nível na frequência esperada

Capotamento:

<table>
<thead>
<tr>
<th>Tipo de embate</th>
<th>Frontal</th>
<th>Lateral</th>
<th>Traseiro</th>
<th>Colisão Ciclista</th>
<th>Atropelamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUITO FREQUENTE</td>
<td>≥ 110 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 20 km/h</td>
</tr>
<tr>
<td>FREQUENTE</td>
<td>≥ 50 km/h</td>
<td>< 30 km/h</td>
<td>< 20 km/h</td>
<td>< 20 km/h</td>
<td></td>
</tr>
</tbody>
</table>

Velocidade
- **≥ 110 km/h**
- **≥ 50 km/h**
- **≥ 30 km/h**
- **≥ 20 km/h**
- **≥ 10 km/h**

<table>
<thead>
<tr>
<th>GRAVIDADE</th>
<th>FREQUÊNCIA ESPERADA (em função do TMDA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATAL</td>
<td>> 7500</td>
</tr>
<tr>
<td>GRAVE</td>
<td>7500 - 3000</td>
</tr>
<tr>
<td>LEVE</td>
<td>3000 - 1500</td>
</tr>
<tr>
<td>MENOR</td>
<td>< 1500</td>
</tr>
</tbody>
</table>

Faixa de rodagem
- Faixa de rodagem única
- Dupla faixa de rodagem

Aspecto n.º 14
EN 234 - Ligações 7 e 17
Perigo de colisões traseiras e laterais, por decisão tardia aos níveis da navegação e do guiamento

Situações especiais:
- Curvas de classe C e D -1 nível na frequência esperada
- Curvas de legibilidade difícil: -1 nível na frequência esperada
- Rectas em patamar: +1 nível na frequência esperada

Capotamento:

<table>
<thead>
<tr>
<th>Tipo de embate</th>
<th>Frontal</th>
<th>Lateral</th>
<th>Traseiro</th>
<th>Colisão Ciclista</th>
<th>Atropelamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUITO FREQUENTE</td>
<td>≥ 110 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 20 km/h</td>
</tr>
<tr>
<td>FREQUENTE</td>
<td>≥ 50 km/h</td>
<td>< 30 km/h</td>
<td>< 20 km/h</td>
<td>< 20 km/h</td>
<td></td>
</tr>
</tbody>
</table>

Velocidade
- **≥ 110 km/h**
- **≥ 50 km/h**
- **≥ 30 km/h**
- **≥ 20 km/h**
- **≥ 10 km/h**

<table>
<thead>
<tr>
<th>GRAVIDADE</th>
<th>FREQUÊNCIA ESPERADA (em função do TMDA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATAL</td>
<td>> 7500</td>
</tr>
<tr>
<td>GRAVE</td>
<td>7500 - 3000</td>
</tr>
<tr>
<td>LEVE</td>
<td>3000 - 1500</td>
</tr>
<tr>
<td>MENOR</td>
<td>< 1500</td>
</tr>
</tbody>
</table>

Faixa de rodagem
- Faixa de rodagem única
- Dupla faixa de rodagem
Aspecto n.º 15

EN 234 - Ligações 9 e 17

Perigo de colisões traseiras, por percepção tardia da desaceleração necessária para inserção em ramo de interseção ou da velocidade de inserção de veículos na corrente de trabalho.

<table>
<thead>
<tr>
<th>Velocidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 110 km/h</td>
</tr>
<tr>
<td>≥ 50 km/h</td>
</tr>
<tr>
<td>≥ 30 km/h</td>
</tr>
<tr>
<td>< 40 km/h</td>
</tr>
</tbody>
</table>

FREQUÊNCIA ESPERADA (em função do TMDA)

<table>
<thead>
<tr>
<th>Faixa de rodagem única</th>
<th>> 19000</th>
<th>19000 - 10000</th>
<th>10000 - 5000</th>
<th>< 5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUITO</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FREQUENTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCASIONAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RARO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Situações especiais:

- Curvas de classe C e D -1 nível na frequência esperada
- Curvas de legibilidade ao nível da velocidade esperada
- Rectas em patamar -1 nível na frequência esperada

Capotamento:

- Frontal
- Lateral
- Traseiro
- Colisão cuticulada
- Atropelamento

GRAVIDADE

- GRAVE
- LEVE
- MENOR

Correcção obrigatória

Correcção necessária, mesmo se os custos forem elevados

Correcção recomendável (necessária, se os custos forem moderados)

Correcção ou mitigação do perigo, se os custos forem baixos (facultativa)

Aspecto n.º 16

EN 234 - Ligações 6, 7, 10, 11, 14 e 15

Perigo de atropelamento e de colisão, por inadaptação da velocidade às condições de circulação em meio urbano e por ausência de expectativa de circulação de peões.

<table>
<thead>
<tr>
<th>Velocidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 110 km/h</td>
</tr>
<tr>
<td>≥ 50 km/h</td>
</tr>
<tr>
<td>≥ 30 km/h</td>
</tr>
<tr>
<td>< 40 km/h</td>
</tr>
</tbody>
</table>

FREQUÊNCIA ESPERADA (em função do TMDA)

<table>
<thead>
<tr>
<th>Faixa de rodagem única</th>
<th>> 19000</th>
<th>19000 - 10000</th>
<th>10000 - 5000</th>
<th>< 5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUITO</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FREQUENTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCASIONAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RARO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Situações especiais:

- Curvas de classe C e D -1 nível na frequência esperada
- Curvas de legibilidade ao nível da velocidade esperada
- Rectas em patamar -1 nível na frequência esperada

Capotamento:

- Frontal
- Lateral
- Traseiro
- Colisão cuticulada
- Atropelamento

GRAVIDADE

- GRAVE
- LEVE
- MENOR

Correcção obrigatória

Correcção necessária, mesmo se os custos forem elevados

Correcção recomendável (necessária, se os custos forem moderados)

Correcção ou mitigação do perigo, se os custos forem baixos (facultativa)

Aspecto n.º 17

EN 234 - Ligação 13

Perigo de colisão frontal ou lateral a elevada velocidade, envolvendo veículos em ultrapassagem e viaturas provenientes da área de serviço.

<table>
<thead>
<tr>
<th>Velocidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 110 km/h</td>
</tr>
<tr>
<td>≥ 50 km/h</td>
</tr>
<tr>
<td>≥ 30 km/h</td>
</tr>
<tr>
<td>< 40 km/h</td>
</tr>
</tbody>
</table>

FREQUÊNCIA ESPERADA (em função do TMDA)

<table>
<thead>
<tr>
<th>Faixa de rodagem única</th>
<th>> 19000</th>
<th>19000 - 10000</th>
<th>10000 - 5000</th>
<th>< 5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUITO</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FREQUENTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCASIONAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RARO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Situações especiais:

- Curvas de classe C e D -1 nível na frequência esperada
- Curvas de legibilidade ao nível da velocidade esperada
- Rectas em patamar -1 nível na frequência esperada

Capotamento:

- Frontal
- Lateral
- Traseiro
- Colisão cuticulada
- Atropelamento

GRAVIDADE

- GRAVE
- LEVE
- MENOR

Correcção obrigatória

Correcção necessária, mesmo se os custos forem elevados

Correcção recomendável (necessária, se os custos forem moderados)

Correcção ou mitigação do perigo, se os custos forem baixos (facultativa)

Aspecto n.º 18

EN 234 - Ligações 16 e 17
Perigo de colisões traseiras ou laterais, por decisão tardia ao nível da navegação

<table>
<thead>
<tr>
<th>Capotamento</th>
<th>Frontal</th>
<th>Lateral</th>
<th>Traseiro</th>
<th>Colisão c/ciclista</th>
<th>Altopelamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>> 110 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 60 km/h</td>
<td>≥ 60 km/h</td>
<td>≥ 60 km/h</td>
</tr>
<tr>
<td></td>
<td>≥ 80 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 50 km/h</td>
</tr>
<tr>
<td></td>
<td>≥ 70 km/h</td>
<td>≥ 50 km/h</td>
<td>≥ 30 km/h</td>
<td>≥ 30 km/h</td>
<td>≥ 20 km/h</td>
</tr>
<tr>
<td></td>
<td>< 40 km/h</td>
<td>< 30 km/h</td>
<td>< 30 km/h</td>
<td>< 20 km/h</td>
<td>< 20 km/h</td>
</tr>
</tbody>
</table>

Velocidade

Situações especiais:
- Curvas de classe C e D -1 nível na frequência esperada
- Curvas de legibilidade difícil -1 nível na frequência esperada
- Rectas em patamar +1 nível na frequência esperada

<table>
<thead>
<tr>
<th>GRAVIDADE</th>
<th>FREQUÊNCIA ESPERADA (em função do TMDA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATAL</td>
<td>> 19000</td>
</tr>
<tr>
<td>GRAVE</td>
<td>19000 - 10000</td>
</tr>
<tr>
<td>LEVE</td>
<td>10000 - 5000</td>
</tr>
<tr>
<td>MENOR</td>
<td>5000 - 2000</td>
</tr>
</tbody>
</table>

Tipo de embate
- Correcção obrigatória
- Correcção necessária, mesmo se os custos forem elevados
- Correcção recomendável (necessária, se os custos forem moderados)
- Correcção ou mitigação do perigo, se os custos forem baixos (facultativa)
Anexo IV – Relatório de inspeção de segurança rodoviária à A 8, entre os km 44+111 (Torres Vedras) e 62+420 (Bombarral), a 2010-12-15
RELATÓRIO DE INSPECÇÃO DE SEGURANÇA RODOVIÁRIA

A 8
km 44+111 (Torres Vedras) a 62+420 (Bombarral)
2010-12-15
A 8 – km 44+111 (Torres Vedras) – 62+420 (Bombarral)
2010-12-15

INSPECÇÃO DE SEGURANÇA RODOVIÁRIA

EQUIPA:
Engº João Lourenço Cardoso (LNEC)
José Gil (LNEC)

1 – ELEMENTOS CONSULTADOS

1.1 - Projectos

IC1 Variante à EN 8 entre Torres Vedras e Bombarral (km 0+000 ao km 24+087)

Peças desenhadas:
Drenagem – desenhos
109-E-00-01 a 109-E-00-03
109-E-20-01 a 109-E-20-03
109-E-21-01
109-E-22-01 a 109-E-22-49
109-E-23-01 a 109-E-23-13
109-E-24-01 a 109-E-24-49
109-E-25-01 a 109-E-25-05
109-E-26-01 a 109-E-26-09
109-E-27-01 a 109-E-27-08
109-E-28-01 a 109-E-28-03
109-E-29-01

Traçado – desenhos
109-E-00-01 a 109-E-00-03
109-E-10-01 a 109-E-10-125
109-E-12-01 a 109-E-12-16

Sinalização e segurança – desenhos
109-E-00-01 a 109-E-00-03
109-E-30-01
109-E-31-01 a 109-E-31-59
109-E-32-01 a 109-E-32-60

Peças escritas:
Volume1 - Rede Viária - Memória e Anexos

Nota: Não foram disponibilizados elementos do projecto relativos ao trecho entre os km 60+500 e 62+420, que aparentemente corresponderão a outro sub-lanço de construção.
1.2 – Resultados de campanhas de auscultação de características superficiais

Não disponíveis.

1.3 – Tráfego médio diário anual

<table>
<thead>
<tr>
<th>Ano</th>
<th>Veículos</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ligações 1 e 2</td>
<td>Ligações 3 e 4</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>11642</td>
<td>11316</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>11136</td>
<td>10926</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>14396</td>
<td>14204</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>14668</td>
<td>14294</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>15310</td>
<td>14910</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>nd</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>nd</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>nd</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>17507</td>
<td>17508</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>18438</td>
<td>17902</td>
<td></td>
</tr>
</tbody>
</table>

2 – MEDIÇÕES EFECTUADAS

2.1 - Velocidades

Medições realizadas junto ao km 52+800, em ambos os sentidos.

<table>
<thead>
<tr>
<th>Estatísticas (km/h)</th>
<th>Torres Vedras</th>
<th>Bombarral</th>
<th>Torres Vedras</th>
<th>Bombarral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mínimo</td>
<td>70</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Máximo</td>
<td>176</td>
<td>182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Média</td>
<td>114</td>
<td>108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{85}</td>
<td>136</td>
<td>132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{15}</td>
<td>91</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Número de veículos por hora</td>
<td>212</td>
<td>316</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3 – DESCRIÇÃO GERAL DA AUTO-ESTRADA

<table>
<thead>
<tr>
<th>Elemento</th>
<th>km inicial</th>
<th>km final</th>
<th>Tipo</th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nó Torres Vedras Este (Lourinhã)</td>
<td>44+111</td>
<td>44+803</td>
<td>Trompete</td>
<td>Traçado diferente do projecto</td>
</tr>
<tr>
<td>Ligação 1</td>
<td>44+803</td>
<td>48+286</td>
<td>2 × 2 vias</td>
<td>Não consta do projecto</td>
</tr>
<tr>
<td>Área de Serviço</td>
<td>48+286</td>
<td>49+481</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligação 2</td>
<td>49+481</td>
<td>53+718</td>
<td>2 × 2 vias</td>
<td></td>
</tr>
<tr>
<td>Nó Campelos (Outeiro da Cabeça)</td>
<td>53+718</td>
<td>54+425</td>
<td>Trompete</td>
<td>Traçado diferente do projecto</td>
</tr>
<tr>
<td>Ligação 3</td>
<td>54+425</td>
<td>57+085</td>
<td>2 × 2 vias</td>
<td></td>
</tr>
<tr>
<td>Praça de portagem</td>
<td>57+085</td>
<td>57+588</td>
<td>5 × 3 vias</td>
<td>Não consta do projecto</td>
</tr>
<tr>
<td>Ligação 4</td>
<td>57+588</td>
<td>61+618</td>
<td>2 × 2 vias</td>
<td></td>
</tr>
<tr>
<td>Nó Bombarral</td>
<td>61+618</td>
<td>62+420</td>
<td>Trevo parcial</td>
<td>Traçado diferente do projecto</td>
</tr>
</tbody>
</table>

Nota: a laranja assinalam-se as zonas de áreas de serviço; e a azul as praças de portagem.

4 – PERIGOS RELACIONADOS COM A SEGURANÇA RODOVIÁRIA

Nota prévia:
- Entre parênteses indicam-se os números das fotos que apoiam a descrição de alguns problemas: os números romanos referem-se a fotos ilustrando problemas de conservação corrente com impacte directo na segurança rodoviária; os números com algarismos arábicos correspondem às fotos dos aspectos de segurança rodoviária típicos de ISR.
- As fotos referentes a problemas de conservação corrente com impacte significativo na segurança rodoviária constam do Anexo IV-1; as fotografias ilustradoras dos aspectos de segurança rodoviária detectados na ISR são apresentadas no Anexo IV-2. No Anexo IV-3 apresentam-se exemplos de fichas de avaliação dos problemas de segurança detectados (identificadas na coluna respectiva).
- Os tipos de problemas são descritos no ponto 5 deste relatório de ISR.
- Foi adoptada a seguinte classificação dos perigos:
 - Gravidade de ferimentos: F – fatal; G – grave; L – leve; M – menor
 - Probabilidade de eventos: 1 – Muito frequente; 2 – Frequent; 3 – Ocasional; 4 – Raro.

<table>
<thead>
<tr>
<th>Sentido</th>
<th>km</th>
<th>Deficiência de conservação</th>
<th>Tipo de problema</th>
<th>Perigo</th>
<th>Gravid. Probab. Classe</th>
<th>Intervenção</th>
<th>Ficha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crescente</td>
<td>45,0</td>
<td>E</td>
<td>Colisão frontal, por circulação em sentido contrário ao da faixa de rodam (1)</td>
<td>F2 - O</td>
<td>Colocar sinais de sentido proibido do lado direito da faixa de rodam (sentido de marcha) e duplicá-lo no outro lado.</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>Crescente</td>
<td>45,5</td>
<td>D</td>
<td>Choque com obstáculo na AAFR (por defeicência de nível de retenção) ou com terminal de GS (2)</td>
<td>L3 - R</td>
<td>Substituir a interrupção da GS (inferior a 50–75 m) por solução de continuidade das GS; assegurar comprimentos mínimos a partir do obstáculo, para ambos os lados</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Sentido</td>
<td>km</td>
<td>Deficiência de conservação</td>
<td>Tipo de problema</td>
<td>Perigo</td>
<td>Gravíd. Probab. Classe</td>
<td>Intervenção</td>
<td>Ficha</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>---------------------------</td>
<td>-----------------</td>
<td>--------</td>
<td>------------------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>Crescente 45,7</td>
<td>D</td>
<td>Chocoe com obstáculo (posto SOS) na AAFR (por deficiência de nível de retenção) ou com terminal de GS</td>
<td>G3 - N</td>
<td>Dotar os postes de aparelhos de fragmentação; ou assegurar protecção do tráfego, mediante GS adequadamente dimensionadas</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crescente 45,8</td>
<td>D</td>
<td>Chocoe com boca de aqueduto na zona livre (a menos de 13 m da faixa de rodagem) (3)</td>
<td>F3 - O</td>
<td>Alterar geometria da boca do aqueduto ou do terreno circundante, tomando-o atravessável; ou proteger o tráfego mediante GS</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crescente 46,6</td>
<td>D</td>
<td>Chocoe com obstáculo na AAFR (por deficiência de nível de retenção) ou com terminal de GS</td>
<td>G3 - N</td>
<td>Substituir a interrupção da GS (inferior a 50~75 m) por soluções de continuidade das GS; assegurar comprimentos mínimos a partir do obstáculo, para ambos os lados</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crescente 46,8</td>
<td>D</td>
<td>Chocoe com boca de aqueduto na zona livre (a menos de 13 m da faixa de rodagem) (4)</td>
<td>F3 - O</td>
<td>Alterar geometria da boca do aqueduto ou do terreno circundante, tomando-o atravessável; ou proteger o tráfego mediante GS</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crescente 47,0</td>
<td>D</td>
<td>Chocoe com obstáculo na AAFR, por deficiente retenção da GS (5)</td>
<td>G3 - N</td>
<td>Assegurar comprimento mínimo da GS antes do painel de sinalização</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crescente 47,4</td>
<td>D</td>
<td>Chocoe com obstáculo na AAFR, por deficiente retenção de GS curta; interrupção de GS desnecessária (10)</td>
<td>G3 - N</td>
<td>Assegurar comprimento mínimo da GS antes e depois dos obstáculos. Substituir interrupções inferiores a 75~100 m, por soluções de continuidade da GS</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crescente 48,0</td>
<td>E</td>
<td>Colisão frontal (7)</td>
<td>F2 - O</td>
<td>Colocar sinal de sentido proibido em falta no lado direito</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crescente 48,0</td>
<td>D</td>
<td>Chocoe com poste de painel de sinalização (8)</td>
<td>G3 - N</td>
<td>Proligar GS até ao mínimo requerido para mobilizar nível de retenção normal (60 m antes do poste)</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crescente 49,1</td>
<td>E</td>
<td>Sinalização vertical com baixo contraste ou rectoreflexão (I)</td>
<td>G3 - N</td>
<td>Substituir sinais com falta de contraste (dia) ou rectoreflexão (noite)</td>
<td>K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crescente 50,5</td>
<td>D</td>
<td>Capotamento em choque com GS, por bloqueamento de rodas do lado direito da viatura e insuiciente altura de colocação da viga (9)</td>
<td>G2 - O</td>
<td>Afastar valeta da linha dos postes da GS (mínimo 0,10 m); aumentar largura da zona nivelada com o pavimento para valor idêntico ao da largura útil da GS; verificar altura da viga em todo o seu comprimento</td>
<td>B ; C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crescente 52,1</td>
<td>D</td>
<td>Chocoe com obstáculo na AAFR, por deficiente retenção de GS curta; interrupção de GS desnecessária (10)</td>
<td>G3 - N</td>
<td>Assegurar comprimento mínimo da GS antes e depois dos obstáculos. Substituir interrupções inferiores a 75~100 m, por soluções de continuidade da GS</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crescente 52,5</td>
<td>D</td>
<td>Capotamento, por bloqueamento de rodas da viatura na valeta (1/2 cana); colisão lateral por reentrada na faixa de rodagem com elevado ângulo, por desnível berma-solo elevado (0,16 m); despiste por hidroplanagem, devido a elevada altura de película de água na transição da sobrelevação para o terreno</td>
<td>G3 - N</td>
<td>Suavizar a inclinação das faces da valeta revestida. Suavizar a transição da berma para a superfície do solo nivelando as duas superfícies. Verificar drenagem superficial e diminuir altura de película de água (aumentar macrotextura; alterar inclinação da berma direita; melhorar drenagem superficial)</td>
<td>D ; L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crescente 53,3</td>
<td>C</td>
<td>Chocoe com obstáculo ou colisão traseira</td>
<td>G3 - N</td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crescente 54,6</td>
<td>C</td>
<td>Colisão traseira ou despiste, por visibilidade nos ramos obstruída por vegetação</td>
<td>G3 - N</td>
<td>Podar vegetação com maior frequência; aumentar comprimento de GS para valor mínimo que assegura eficácia</td>
<td>G ; H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crescente 55,9</td>
<td>D</td>
<td>Colisão lateral ou capotamento, por desnível berma-valeta (11)</td>
<td>L3 - R</td>
<td>Nivelar início da valeta com o fim da berma.</td>
<td>D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nota: As categorias de perigo são: D (Definido), E (Exigente), H (Higienico), J (Justificável), K (Kit) e G (Geral). As categorias de gravidade são: G3-N (Gravidade Normal), G3-Classe (Gravidade Classe).
<table>
<thead>
<tr>
<th>Sentido</th>
<th>km</th>
<th>Deficiência de conservação</th>
<th>Tipo de problema</th>
<th>Perigo</th>
<th>Gravid. Probab. Classe</th>
<th>Intervenção</th>
<th>Ficha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crescente</td>
<td>56,0</td>
<td>D</td>
<td>Colisão lateral ou capotamento, por desnível berma-valeta excessivo; choque com poste, por ocupação da zona da largura útil (poste a 0.83 m da GS) (12)</td>
<td>G3 - N</td>
<td>Nivelar início da via com o fim da berma; Afastar o poste da zona da largura útil, onde está-lo de base frágil; Assegurar nivelamento da zona da largura útil com o pavimento da berma</td>
<td>C ; D F</td>
<td></td>
</tr>
<tr>
<td>Crescente</td>
<td>56,3</td>
<td>D</td>
<td>Choque com obstáculo na AAFR, por deficiente retenção da GS</td>
<td>G3 - N</td>
<td>Aumentar a GS; antes e após o obstáculo, para o compimento mínimo dos sistemas</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Crescente</td>
<td>57,0</td>
<td>D</td>
<td>Choque com proteção das cabanas de portagem</td>
<td>F2 - O</td>
<td>Instalar amortecedores de choque a montante das cabines de portagem</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Crescente</td>
<td>57,5</td>
<td>D</td>
<td>Choque com candeeiros dentro da largura útil da GS</td>
<td>L3 - R</td>
<td>Afastar candeeiros da zona da largura útil da GS; ou instalar bases frágeis nos candeeiros; ou substituir colunas por colunas frágeis</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Crescente</td>
<td>58,0</td>
<td>Características de aderência variáveis (II)</td>
<td></td>
<td>F Despiste</td>
<td>L3 - R</td>
<td>Verificar atrito mobilizável sob condições de superfície do pavimento molhada</td>
<td>L</td>
</tr>
<tr>
<td>Crescente</td>
<td>58,2</td>
<td>C</td>
<td>Colisão traseira ou manobra de emergência, por percepção tardia de obstáculo na via, devido a visibilidade bloqueada por vegetação na AAFR.</td>
<td>G2 - O</td>
<td>Eliminar vegetação arbórea</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Crescente</td>
<td>59,1</td>
<td>D</td>
<td>Choque com obstáculo na AAFR ou com terminal de GS</td>
<td>L3 - R</td>
<td>Substituir a interrupção da GS (inferior a 50~75 m) por solução de continuidade das GS</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Crescente</td>
<td>59,3</td>
<td>D</td>
<td>Choque com obstáculo na AAFR ou com terminal de GS</td>
<td>L3 - R</td>
<td>Substituir a interrupção da GS (inferior a 50~75 m) por solução de continuidade das GS</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Crescente</td>
<td>59,5</td>
<td>D</td>
<td>Choque com obstáculo na AAFR ou com terminal de GS</td>
<td>L3 - R</td>
<td>Substituir a interrupção da GS (inferior a 50~75 m) por solução de continuidade das GS</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Crescente</td>
<td>59,6</td>
<td>D</td>
<td>Choque com obstáculo na AAFR ou com terminal de GS</td>
<td>L3 - R</td>
<td>Substituir a interrupção da GS (inferior a 50~75 m) por solução de continuidade das GS</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Crescente</td>
<td>59,8</td>
<td>D</td>
<td>Choque com obstáculo na AAFR ou com terminal de GS</td>
<td>L3 - R</td>
<td>Substituir a interrupção da GS (inferior a 50~75 m) por solução de continuidade das GS</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Crescente</td>
<td>59,9</td>
<td>D</td>
<td>Choque com obstáculo na AAFR, por deficiente retenção da GS</td>
<td>G3 - N</td>
<td>Assegurar comprimento mínimo da GS antes do início do talude</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Crescente</td>
<td>60,0</td>
<td>D</td>
<td>Capotamento em choque com GS, por insuficiente altura de colocação da viga</td>
<td>G2 - O</td>
<td>Alterar a viga da GS</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Crescente</td>
<td>62,4</td>
<td>D</td>
<td>Choque com sinais verticais (16)</td>
<td>G3 - N</td>
<td>Dotar os sinais de postes frágeis</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>61,6</td>
<td>D</td>
<td>Choque com boca de aqueduto na zona livre (a menos de 13 m da faixa de rodagem)</td>
<td>G3 - N</td>
<td>Alterar geometria da boca de aqueduto ou do terreno circundante, tomando-o atravessável; ou proteger o tráfego mediante GS</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>61,4</td>
<td>D</td>
<td>Choque com obstáculo na AAFR, por deficiente retenção da GS e sinal dentro da zona da largura útil (18)</td>
<td>L3 - R</td>
<td>Assegurar comprimento mínimo do GS antes do painel de sinalização; afastar sinal da largura útil da GS</td>
<td>F ; H</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>61,0</td>
<td>D</td>
<td>Choque com obstáculo na AAFR ou com terminal de GS</td>
<td>L3 - R</td>
<td>Substituir a interrupção da GS (inferior a 50~75 m) por solução de continuidade das GS</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>59,0</td>
<td>D</td>
<td>Choque com obstáculo (fundação do sinal) na zona da largura útil da GS (distância do obstáculo à GS é de 0.70 m, inferior a 1.20 m). Capotamento, por bloqueamento de rodas do lado direito da via, devido a face de valeta abrupta e muito próxima dos postes da GS (19)</td>
<td>G3 - N</td>
<td>Rebaixar sapata de fundação do sinal; ou afastá-la de modo a que a distância à GS seja superior ao valor da largura útil. Afastar valeta da linha dos postes da GS (mínimo 0.10 m)</td>
<td>C ; F</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>58,2</td>
<td>D</td>
<td>Choque com obstáculo (árvore) na zona livre (a menos de 13 m da faixa de rodagem) (20)</td>
<td>G3 - N</td>
<td>Remover árvore; ou instalar GS</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Sentido</td>
<td>km</td>
<td>Deficiência de conservação</td>
<td>Tipo de problema</td>
<td>Perigo</td>
<td>Gravid. Probab. Classe</td>
<td>Intervenção</td>
<td>Ficha</td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
<td>----------------------------</td>
<td>---</td>
<td>-------------------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>Decrescente</td>
<td>58.1</td>
<td>D</td>
<td>Choque com obstáculo na AAFR, por deficiente retenção da GS</td>
<td>L3 - R</td>
<td>Assegurar comprimento mínimo da GS antes do painel de sinalização</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>58.0</td>
<td>D</td>
<td>Choque de motociclista com obstáculo (tampa de caixa de esgoto) (21)</td>
<td>G4 - R</td>
<td>Nivelar o solo com o topo da tampa da caixa de visita</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>57.5</td>
<td>D</td>
<td>Choque com candeiros dentro da largura útil da GS</td>
<td>L3 - R</td>
<td>Afastar candeiros da zona da largura útil da GS; ou instalar bases frágeis nos candeiros; ou substituir colunas por colunas frágeis</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>57.3</td>
<td>D</td>
<td>Choque com proteção das cabines de portagem (22)</td>
<td>F2 - O</td>
<td>Instalar amortecedores de choque a montante das cabines de portagem</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>56.0</td>
<td>D</td>
<td>Colisão lateral ou capotamento, por desnível berma-valeta excessivo (0.12 m)</td>
<td>L3 - R</td>
<td>Nivelar início da valeta com o fim da berma.</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>55.7</td>
<td>D</td>
<td>Choque com obstáculo na AAFR ou com terminal de GS</td>
<td>L3 - R</td>
<td>Substituir a interrupção da GS (inferior a 50~75 m) por solução de continuidade das GS</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>55.4</td>
<td>D</td>
<td>Choque com obstáculo na AAFR, por deficiente retenção da GS (29)</td>
<td>G3 - N</td>
<td>Assegurar comprimento mínimo da GS antes do início do talude</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>55.2</td>
<td>D</td>
<td>Choque com obstáculo na AAFR (24)</td>
<td>L3 - R</td>
<td>Remover o sinal para fora da zona da largura útil da GS</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>54.4</td>
<td>D</td>
<td>Choque com obstáculo na AAFR ou com terminal de GS</td>
<td>L3 - R</td>
<td>Substituir a interrupção da GS (inferior a 50~75 m) por solução de continuidade das GS</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>54.0</td>
<td>D</td>
<td>Choque com candeiros dentro da largura útil da GS (25)</td>
<td>L3 - R</td>
<td>Afastar candeiros da zona da largura útil da GS; ou instalar bases frágeis nos candeiros; ou substituir colunas por colunas frágeis</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>53.0</td>
<td>F</td>
<td>Despiste por hidroplanagem, devido a elevada altura de película de água na transição da sobrelevação</td>
<td>G3 - N</td>
<td>Suavizar a inclinação das faces da valeta revestida. Suavizar a transição da berma para a superfície do solo nivelando as duas superfícies; verificar drenagem superficial e diminuir altura de película de água (aumentar macrotextura; alterar inclinação da berma direita; melhorar drenagem superficial)</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>52.5</td>
<td>D</td>
<td>Capotamento, por bloqueamento de rodas da viatura na valeta (1/2 cana)</td>
<td>G3 - N</td>
<td>Suavizar a inclinação das faces da valeta revestida</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>51.8</td>
<td>D</td>
<td>Choque com obstáculo na AAFR (Valeta em 1/2 cana, após berma; Boca de aqueduto no intradorso de curva (a 5.6 m da berma) (26)</td>
<td>L3 - R</td>
<td>Choque com obstáculo na AAFR (Valeta em 1/2 cana, após berma; Boca de aqueduto no intradorso de curva (a 5.6 m da berma)</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>51.8</td>
<td>F</td>
<td>Despiste (27)</td>
<td>G3 - N</td>
<td>Corrigir superfície do pavimento (que se encontra em ruína)</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>50.6</td>
<td>D</td>
<td>Choque com boca de aqueduto a 2.90 m da berma (a menos de 13 m da faixa de rodagem) (28)</td>
<td>G3 - N</td>
<td>Alterar geometria da boca do aqueduto ou do terreno circundante, tomando-o atravessável; ou proteger o tráfego mediante GS</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>50.1</td>
<td>D</td>
<td>Choque com boca de aqueduto na base de GS (29)</td>
<td>L3 - R</td>
<td>Alterar geometria da boca do aqueduto ou do terreno circundante, tomando-o atravessável; ou respeitar a dimensão da largura útil</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>50.0</td>
<td>D</td>
<td>Capotamento, por altura de GS inferior ao recomendado</td>
<td>G2 - O</td>
<td>Colocar a GS à altura mínima de 0.70 m (a semelhança do que foi feito noutras zonas onde o pavimento foi reforçado)</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>49.2</td>
<td>E</td>
<td>Colisão frontal (30)</td>
<td>F2 - O</td>
<td>Colocar sinal de sentido proibido em falta no lado direito</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>48.2</td>
<td>D</td>
<td>Choque com pilar de PS, por deficiente nível de retenção (31)</td>
<td>G3 - N</td>
<td>Aumentar comprimento de GS após o pilar, para o valor mínimo após obstáculo</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Sentido</td>
<td>km</td>
<td>Deficiência de conservação</td>
<td>Tipo de problema</td>
<td>Perigo</td>
<td>Grav.</td>
<td>Probab.</td>
<td>Classe</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>---------------------------</td>
<td>-----------------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Decrescente</td>
<td>47,7</td>
<td>D</td>
<td>Choque com boca de aqueduto na zona livre (a menos de 13 m da faixa de rodagem)</td>
<td>G3 - N</td>
<td>Alterar geometria da boca do aqueduto ou do terreno circundante, tornando-o atravessável; ou proteger o tráfego mediante GS</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>47,7</td>
<td>D</td>
<td>Queda de veículos pesados; colisão com obstáculo</td>
<td>F2 - O</td>
<td>Instalar GS com nível de retenção H1 ou H2 no viaduto; bizelar o início do passeio e respectivo lances</td>
<td>A ; D</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>46,7</td>
<td>D</td>
<td>Choque com obstáculo na AAFR, por deficiente retenção da GS</td>
<td>G3 - N</td>
<td>Assegurar comprimento mínimo da GS antes do início do talude</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>46,7</td>
<td>D</td>
<td>Capotamento em choque com GS</td>
<td>G3 - N</td>
<td>Aumentar largura da zona nivelada com o pavimento para valor idêntico ao da largura útil da GS</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>46,0</td>
<td>D</td>
<td>Capotamento de autocarros em talude alto e inclinado (32)</td>
<td>G2 - O</td>
<td>Aumentar o nível de retenção da GS para H1 ou H2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>45,9</td>
<td>D</td>
<td>Choque com boca de aqueduto na zona livre (a menos de 13 m da faixa de rodagem)</td>
<td>G3 - N</td>
<td>Alterar geometria da boca do aqueduto ou do terreno circundante, tornando-o atravessável; ou proteger o tráfego mediante GS</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>45,0</td>
<td>D</td>
<td>Choque com pilar de pórtico de sinalização, por insuficiência de nível de retenção, devido a comprimento insuficiente da GS (33)</td>
<td>G3 - N</td>
<td>Assegurar que a GS tem o comprimento mínimo, antes e depois do pilar do pórtico</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Decrescente</td>
<td>44,9</td>
<td>D</td>
<td>Colisão traseira ou de manobra de emergência, por percepção tardia de obstáculo na via, devido a visibilidade bloqueada por vegetação na AAFR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gravidade de ferimentos: F – fatal; G – grave; L – leve; M – menor
Probabilidade de eventos: 1 – Muito frequente; 2 – Frequente; 3 – Ocasional; 4 – Raro.

Na definição do nível de prioridade a atribuir à intervenção correspondente a cada problema de segurança rodoviária identificado foi usada a matriz de avaliação do Manual Técnico para Inspeções de Segurança Rodoviária.

5 – LISTA DE ASPECTOS CONSIDERADOS

De acordo com o definido no Manual Técnico para Inspeções de Segurança Rodoviária, foram analisados os seguintes aspectos:

A. Coerência entre a função da estrada e características relevantes do tráfego (velocidades, TMDA e composição do tráfego) e do uso do solo confinante com a estrada (expectativa a priori);

B. Homogeneidade de traçado (expectativa ad hoc);

C. Adequação das distâncias de visibilidade à velocidade do tráfego;

D. Características da zona livre de obstáculos, na área adjacente à faixa de rodagem;

E. Qualidade da colocação, mensagem e características físicas dos sinais verticais e das marcas rodoviárias;
F. Características superficiais do pavimento, sobretudo quanto à resistência à derrapagem (micro e macrotextura) e irregularidade longitudinal, analisadas pelo menos visualmente.

Mais especificamente, nos trechos entre nós de ligação foram atendidos os seguintes itens:

- Conflitos com animais selvagens (A);
- Drenagem (D e F);
- Marcas rodoviárias (E);
- Sinalização (E);
- Características superficiais dos pavimentos (F);
- Características do perfil transversal tipo (A, B e C);
- Características do perfil longitudinal (A, B e C);
- Características do traçado em planta (A, B e C);
- Características do tráfego de veículos pesados (A, C e E);
- Área adjacente à faixa de rodagem (D).

Na lista anterior indicam-se na coluna “Tipo de problema” os aspectos de segurança rodoviária mais relevantemente afectados pelo item em referência.

Nos nós de ligação foram analisados os itens discriminados a seguir:

- Acessos de terrenos marginais (A, B e C);
- Drenagem (D e F);
- Marcas rodoviárias (E);
- Sinalização (E);
- Características superficiais dos pavimentos (F);
- Visibilidade (C);
- Peões e ciclistas (A, C e E);
- Características do perfil longitudinal (A, B e C);
- Tipo de nó (A e B);
- Características do traçado em planta (A, B e C);
- Área adjacente à faixa de rodagem (D).

Foram realizadas inspecções em período diurno e nocturno.

1 Nota: não foi verificado o ajuste entre as velocidades praticadas e quer o comprimento das vias de aceleração e de desaceleração quer as distâncias de visibilidade nos nós, por falta dos respectivos elementos de projecto.
ANEXO IV-1
PROBLEMAS DE CONSERVAÇÃO CORRENTE COM IMPLICAÇÕES NA SEGURANÇA RODOVIÁRIA
A 8 – km 44+111 (Torres Vedras) – 62+420 (Bombarral)

2010-12-15

Foto I

Foto II
ANEXO IV-2
PERIGOS RELACIONADOS COM A
SEGURANÇA RODOVIÁRIA
A 8 – km 44+111 (Torres Vedras) – 62+420 (Bombarral)
2010-12-15

Foto 01

Foto 02

Foto 03

Foto 04

Foto 05

Foto 06
ANEXO IV-3
EXEMPLOS DE FICHAS DE AVALIAÇÃO DE PERIGOS RELACIONADOS COM A SEGURANÇA RODOVIÁRIA IDENTIFICADOS
A 8 – km 44+111 (Mira) – 62+420 (Bombarral)
2010-12-15

Ficha A

Capotamento de autocarros em talude alto e inclinado, ou queda de viaduto

<table>
<thead>
<tr>
<th>Sentido</th>
<th>km</th>
<th>Obs.</th>
<th>Tipo de embate</th>
<th>GRAVIDADE</th>
<th>FREQUÊNCIA ESPERADA (em função do TMDA)</th>
<th>Estimativa de faixa de redegagem única</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>F2</td>
<td></td>
<td></td>
<td>> 19000 19000 - 10000 10000 - 5000 < 5000</td>
<td>Estrada de faixa de redegagem única</td>
</tr>
<tr>
<td>Decrescente</td>
<td>46.000</td>
<td>G2</td>
<td></td>
<td></td>
<td>> 19000 19000 - 10000 10000 - 5000 < 5000</td>
<td>Estrada de faixa de redegagem única</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de embate</th>
<th>GRAVIDADE</th>
<th>GRAVIDADE</th>
<th>GRAVIDAGE</th>
<th>GRAVIDAGE</th>
<th>GRAVIDAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MUITO FREQUENTE</td>
<td>FREQUENTE</td>
<td>OCASIONAL</td>
<td>RARO</td>
<td>OCASIONAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RARO</td>
<td>OCASIONAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OCASIONAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OCASIONAL</td>
</tr>
</tbody>
</table>

Situações especiais:
- Curvas de classe C e D -1 nível na frequência esperada
- Curvas de legibilidade difícil -1 nível na frequência esperada
- Rendas em paliamento -1 nível na frequência esperada

Velocidade
- ≥ 110 km/h
- ≥ 50 km/h
- ≥ 30 km/h
- ≥ 20 km/h
- < 20 km/h

Nota: Em cada ficha-exemplo foram assinaladas as várias classificações de perigos relacionados com a segurança rodoviária descritos no quadro do ponto 4 do relatório desta ISR (e sumariados no canto superior esquerdo de cada ficha). Numa ISR corrente é preenchida uma ficha para cada perigo – originando assim, uma única classificação de perigo e um único registo fotográfico.

Ficha B

Capotamento em choque com guarda de segurança, por não cumprimento da altura mínima da viga

<table>
<thead>
<tr>
<th>Sentido</th>
<th>km</th>
<th>Obs.</th>
<th>Tipo de embate</th>
<th>GRAVIDADE</th>
<th>FREQUÊNCIA ESPERADA (em função do TMDA)</th>
<th>Estimativa de faixa de redegagem única</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>G2</td>
<td></td>
<td></td>
<td>> 19000 19000 - 10000 10000 - 5000 < 5000</td>
<td>Estrada de faixa de redegagem única</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G3</td>
<td></td>
<td></td>
<td>> 19000 19000 - 10000 10000 - 5000 < 5000</td>
<td>Estrada de faixa de redegagem única</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de embate</th>
<th>GRAVIDADE</th>
<th>GRAVIDADE</th>
<th>GRAVIDAGE</th>
<th>GRAVIDAGE</th>
<th>GRAVIDAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MUITO FREQUENTE</td>
<td>FREQUENTE</td>
<td>OCASIONAL</td>
<td>RARO</td>
<td>OCASIONAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RARO</td>
<td>OCASIONAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OCASIONAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OCASIONAL</td>
</tr>
</tbody>
</table>

Situações especiais:
- Curvas de classe C e D -1 nível na frequência esperada
- Curvas de legibilidade difícil -1 nível na frequência esperada
- Rendas em paliamento -1 nível na frequência esperada

Velocidade
- ≥ 110 km/h
- ≥ 50 km/h
- ≥ 30 km/h
- ≥ 20 km/h
- < 20 km/h

Nota: Em cada ficha-exemplo foram assinaladas as várias classificações de perigos relacionados com a segurança rodoviária descritos no quadro do ponto 4 do relatório desta ISR (e sumariados no canto superior esquerdo de cada ficha). Numa ISR corrente é preenchida uma ficha para cada perigo – originando assim, uma única classificação de perigo e um único registo fotográfico.
Ficha C

Capotamento em choque com guarda de segurança, por não cumprimento das características geométricas da zona de aproximação da zona da largura livre.

<table>
<thead>
<tr>
<th>Sentido</th>
<th>km</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crescente</td>
<td>52.500</td>
<td>G2</td>
</tr>
<tr>
<td>Decrescente</td>
<td>55.900</td>
<td>L3</td>
</tr>
<tr>
<td></td>
<td>56.000</td>
<td>G3</td>
</tr>
<tr>
<td></td>
<td>58.000</td>
<td>G4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de embate</th>
<th>GRAVIDADE</th>
<th>FREQÜÊNCIA ESPERADA (em função do TMDA)</th>
<th>Extração da faixa de rodagem única</th>
<th>Extração de dupla faixa de rodagem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>> 7500</td>
<td>> 5000</td>
<td>1000 - 5000</td>
</tr>
<tr>
<td>Capotamento</td>
<td></td>
<td>MUITO FREQUENTE</td>
<td>FREQUENTE</td>
<td>OCASIONAL</td>
</tr>
<tr>
<td>Frontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traseiro</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colisão ciclista</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atropelamento</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Veicidade

- Correção obrigatória
- Correção necessária, mesmo se os custos forem elevados
- Correção recomendável (necessária, se os custos forem moderados)
- Correção (mitigação do perigo, se os custos forem baixos (facultativa))

Situações especiais:
- Curvas de classe C e D -1 nível na frequência esperada
- Curvas de legibilidade difícil -1 nível na frequência esperada
- Rectas em patamar +1 nível na frequência esperada

Ficha D

Colisão lateral, por reentrada abrupta na faixa, após galgamento do degrau da berma; capotamento, por bloqueamento de rodas, em deslizamento após descida de degrau berma-valeta.

<table>
<thead>
<tr>
<th>Sentido</th>
<th>km</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crescente</td>
<td>52.500</td>
<td>G2</td>
</tr>
<tr>
<td>Decrescente</td>
<td>55.900</td>
<td>L3</td>
</tr>
<tr>
<td></td>
<td>56.000</td>
<td>G3</td>
</tr>
<tr>
<td></td>
<td>58.000</td>
<td>G4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de embate</th>
<th>GRAVIDADE</th>
<th>FREQÜÊNCIA ESPERADA (em função do TMDA)</th>
<th>Extração da faixa de rodagem única</th>
<th>Extração de dupla faixa de rodagem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>> 7500</td>
<td>> 5000</td>
<td>1000 - 5000</td>
</tr>
<tr>
<td>Capotamento</td>
<td></td>
<td>MUITO FREQUENTE</td>
<td>FREQUENTE</td>
<td>OCASIONAL</td>
</tr>
<tr>
<td>Frontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traseiro</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colisão ciclista</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atropelamento</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Veicidade

- Correção obrigatória
- Correção necessária, mesmo se os custos forem elevados
- Correção recomendável (necessária, se os custos forem moderados)
- Correção (mitigação do perigo, se os custos forem baixos (facultativa))

Situações especiais:
- Curvas de classe C e D -1 nível na frequência esperada
- Curvas de legibilidade difícil -1 nível na frequência esperada
- Rectas em patamar +1 nível na frequência esperada

Velocidade

- ≥ 110 km/h |
- ≥ 50 km/h |
- ≥ 60 km/h |

GRAVIDADE

- FATAL |
- GRAVE |
- LEVE |
- MENOR |

FREQUÊNCIA ESPERADA (em função do TMDA)

- > 7500 |
- > 5000 |
- 1000 - 5000 |
- 1500 - 1000 |
- < 1500 |
- < 5000 |

LNEC - Proc. 0703/1/17194 147
Ficha E

Sentido km Obs.

<table>
<thead>
<tr>
<th>Crescente</th>
<th>45.800 F3</th>
<th>46.800 F3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decrescente</td>
<td>47.750 G3</td>
<td>50.100 L3</td>
</tr>
</tbody>
</table>

Veiculação

<table>
<thead>
<tr>
<th>≥ 7500</th>
<th>7500 - 3000</th>
<th>3000 - 1500</th>
<th>< 1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrada de faixa de rodagem única</td>
<td>Estrada de dupla faixa de rodagem</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Situações especiais:

- Curvas de classe C e D -1 nível na frequência esperada
- Curvas de legibilidade difícil: -1 nível na frequência esperada
- Rectas em patamar +1 nível na frequência esperada

Velocidade

<table>
<thead>
<tr>
<th>≥ 110 km/h</th>
<th>≥ 90 km/h</th>
<th>≥ 50 km/h</th>
<th>≥ 30 km/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUITO FREQUENTE</td>
<td>FREQUENTE</td>
<td>OCASIONAL</td>
<td>RARO</td>
</tr>
</tbody>
</table>

Ficha F

Sentido km Obs.

<table>
<thead>
<tr>
<th>Crescente</th>
<th>56.000 G3</th>
<th>57.500 L3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decrescente</td>
<td>54.000 L3</td>
<td>55.200 L3</td>
</tr>
</tbody>
</table>

Veiculação

<table>
<thead>
<tr>
<th>≥ 7500</th>
<th>7500 - 3000</th>
<th>3000 - 1500</th>
<th>< 1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrada de faixa de rodagem única</td>
<td>Estrada de dupla faixa de rodagem</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Situações especiais:

- Curvas de classe C e D -1 nível na frequência esperada
- Curvas de legibilidade difícil: -1 nível na frequência esperada
- Rectas em patamar +1 nível na frequência esperada

Velocidade

<table>
<thead>
<tr>
<th>≥ 110 km/h</th>
<th>≥ 90 km/h</th>
<th>≥ 50 km/h</th>
<th>≥ 30 km/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUITO FREQUENTE</td>
<td>FREQUENTE</td>
<td>OCASIONAL</td>
<td>RARO</td>
</tr>
</tbody>
</table>

Ficha G

Sentido km Obs.

<table>
<thead>
<tr>
<th>Crescente</th>
<th>53.300 G3</th>
<th>54.600 G3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decrescente</td>
<td>54.000 L3</td>
<td>55.200 L3</td>
</tr>
</tbody>
</table>

Veiculação

<table>
<thead>
<tr>
<th>≥ 7500</th>
<th>7500 - 3000</th>
<th>3000 - 1500</th>
<th>< 1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrada de faixa de rodagem única</td>
<td>Estrada de dupla faixa de rodagem</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Situações especiais:

- Curvas de classe C e D -1 nível na frequência esperada
- Curvas de legibilidade difícil: -1 nível na frequência esperada
- Rectas em patamar +1 nível na frequência esperada

Velocidade

<table>
<thead>
<tr>
<th>≥ 110 km/h</th>
<th>≥ 90 km/h</th>
<th>≥ 50 km/h</th>
<th>≥ 30 km/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUITO FREQUENTE</td>
<td>FREQUENTE</td>
<td>OCASIONAL</td>
<td>RARO</td>
</tr>
</tbody>
</table>
Ficha H

A 8

Choque com obstáculo na AAFR, por nível de retenção inadequado, devido a comprimento insuficiente da GS; choque com terminal excedentário, por interrupção demaisdade pequena da GS.

<table>
<thead>
<tr>
<th>Sentido</th>
<th>Obs.</th>
<th>km</th>
<th>Crescente</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>45.500 G3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>46.600 G3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>47.000 G3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48.000 G3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>52.100 G3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>54.600 G3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>56.300 G3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>59.100 L3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>59.300 L3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>59.500 L3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>59.600 L3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>59.900 G3</td>
</tr>
<tr>
<td>Decrecente</td>
<td></td>
<td></td>
<td>45.000 G3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>46.700 G3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48.200 G3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>54.400 L3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>55.400 G3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>55.700 L3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>58.100 L3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>61.000 L3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>61.200 L3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de entate</th>
<th>Correcção obrigatória</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curvas de classe C e D</td>
<td>-1 nível na frequência esperada</td>
</tr>
<tr>
<td>Curvas de legibilidade difícil</td>
<td>+1 nível na frequência esperada</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VELOCIDADE</th>
<th>GRAVIDADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 50 km/h</td>
<td>OCASIONAL</td>
</tr>
<tr>
<td>≥ 70 km/h</td>
<td>LEVE</td>
</tr>
<tr>
<td>≥ 90 km/h</td>
<td>GRAVE</td>
</tr>
<tr>
<td>≥ 110 km/h</td>
<td>FATAL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Situações especiais</th>
<th>Correcção obrigatória</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curvas de classe C e D -1 nível na frequência esperada</td>
<td></td>
</tr>
<tr>
<td>Curvas de legibilidade difícil +1 nível na frequência esperada</td>
<td></td>
</tr>
</tbody>
</table>

Ficha I

A 8

Choque com proteção de cabinas de portageiros.

<table>
<thead>
<tr>
<th>Sentido</th>
<th>Obs.</th>
<th>km</th>
<th>Crescente</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>57.000 F2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>57.300 F2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de entate</th>
<th>Correcção obrigatória</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curvas de classe C e D -1 nível na frequência esperada</td>
<td></td>
</tr>
<tr>
<td>Curvas de legibilidade difícil +1 nível na frequência esperada</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VELOCIDADE</th>
<th>GRAVIDADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 30 km/h</td>
<td>OCASIONAL</td>
</tr>
<tr>
<td>< 50 km/h</td>
<td>LEVE</td>
</tr>
<tr>
<td>< 70 km/h</td>
<td>GRAVE</td>
</tr>
<tr>
<td>< 90 km/h</td>
<td>FATAL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Situações especiais</th>
<th>Correcção obrigatória</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curvas de classe C e D -1 nível na frequência esperada</td>
<td></td>
</tr>
<tr>
<td>Curvas de legibilidade difícil +1 nível na frequência esperada</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VELOCIDADE</th>
<th>GRAVIDADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 30 km/h</td>
<td>OCASIONAL</td>
</tr>
<tr>
<td>≥ 50 km/h</td>
<td>LEVE</td>
</tr>
<tr>
<td>≥ 70 km/h</td>
<td>GRAVE</td>
</tr>
<tr>
<td>≥ 90 km/h</td>
<td>FATAL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Situações especiais</th>
<th>Correcção obrigatória</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curvas de classe C e D -1 nível na frequência esperada</td>
<td></td>
</tr>
<tr>
<td>Curvas de legibilidade difícil +1 nível na frequência esperada</td>
<td></td>
</tr>
</tbody>
</table>

LNEC - Proc. 0703/1/17194 149
Ficha J

Colisão frontal, por circulação em sentido contrário ao da faixa de rodagem

<table>
<thead>
<tr>
<th>Caputamento</th>
<th>Frontal</th>
<th>Lateral</th>
<th>Transito</th>
<th>Colisão ciclista</th>
<th>Atropelamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 110 km/h</td>
<td>≥ 50 km/h</td>
</tr>
<tr>
<td>≥ 90 km/h</td>
<td>≥ 50 km/h</td>
</tr>
<tr>
<td>≤ 30 km/h</td>
<td>≥ 20 km/h</td>
<td>≥ 20 km/h</td>
<td>≥ 20 km/h</td>
<td>≥ 20 km/h</td>
<td></td>
</tr>
</tbody>
</table>

Veiculidade

Situações especiais:
- Curvas de classe C e D: -1 nível na frequência esperada
- Curvas de legibilidade difícil: -1 nível na frequência esperada
- Rectas em patamar: +1 nível na frequência esperada

Grau de perigo:
- FATAL
- GRAVE
- LEVE
- OCASIONAL
- RARO

Ficha K

Colisões traseiras, por velocidade excessivamente baixa ou por decisões tardias ao nível da navegação; em especial, de noite

<table>
<thead>
<tr>
<th>Caputamento</th>
<th>Frontal</th>
<th>Lateral</th>
<th>Transito</th>
<th>Colisão ciclista</th>
<th>Atropelamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 110 km/h</td>
<td>≥ 50 km/h</td>
</tr>
<tr>
<td>≥ 90 km/h</td>
<td>≥ 50 km/h</td>
</tr>
<tr>
<td>≤ 30 km/h</td>
<td>≥ 20 km/h</td>
<td>≥ 20 km/h</td>
<td>≥ 20 km/h</td>
<td>≥ 20 km/h</td>
<td></td>
</tr>
</tbody>
</table>

Veiculidade

Situações especiais:
- Curvas de classe C e D: -1 nível na frequência esperada
- Curvas de legibilidade difícil: -1 nível na frequência esperada
- Rectas em patamar: +1 nível na frequência esperada

Grau de perigo:
- FATAL
- GRAVE
- LEVE
- OCASIONAL
- RARO

Ficha L

Despiste, por características superficiais deficientes

<table>
<thead>
<tr>
<th>Caputamento</th>
<th>Frontal</th>
<th>Lateral</th>
<th>Transito</th>
<th>Colisão ciclista</th>
<th>Atropelamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 110 km/h</td>
<td>≥ 50 km/h</td>
</tr>
<tr>
<td>≥ 90 km/h</td>
<td>≥ 50 km/h</td>
</tr>
<tr>
<td>≤ 30 km/h</td>
<td>≥ 20 km/h</td>
<td>≥ 20 km/h</td>
<td>≥ 20 km/h</td>
<td>≥ 20 km/h</td>
<td></td>
</tr>
</tbody>
</table>

Veiculidade

Situações especiais:
- Curvas de classe C e D: -1 nível na frequência esperada
- Curvas de legibilidade difícil: -1 nível na frequência esperada
- Rectas em patamar: +1 nível na frequência esperada

Grau de perigo:
- FATAL
- GRAVE
- LEVE
- OCASIONAL
- RARO